Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 472-478    DOI: 10.11900/0412.1961.2016.00288
  本期目录 | 过刊浏览 |
球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究
童文辉1,赵子龙1,张新元1,王杰1,国旭明1,段新华2,刘豫2
1 沈阳航空航天大学材料科学与工程学院 沈阳110136
2 沈阳大陆激光成套设备有限公司 沈阳110136
Microstructure and Properties of TiC/Co-Based Alloyby Laser Cladding on the Surface of NodularGraphite Cast Iron
Wenhui TONG1,Zilong ZHAO1,Xinyuan ZHANG1,Jie WANG1,Xuming GUO1,Xinhua DUAN2,Yu LIU2
1 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Shenyang Dalu Laser Complete Equipment Co. Ltd., Shenyang 110136, China
全文: PDF(5514 KB)   HTML
摘要: 

采用激光熔覆方法在球墨铸铁表面制备30%TiC/钴基合金熔覆层,通过OM、SEM、EDS、XRD、TEM、MHV2000数显显微硬度计,分析了熔覆层的显微组织、成分、物相、熔覆层的硬度变化规律。结果表明,球墨铸铁基体与熔覆层能形成良好的冶金结合,熔覆层由表层的树枝晶和内部的胞状晶组成,从熔体中原位析出初晶TiC,且初晶TiC的量从熔覆层内部到表层逐渐增加,而未熔的TiC颗粒在晶间均匀分布,熔覆层主要由γ-Co、TiC、CoCx和少量的Cr7C3相组成,熔覆层的最高硬度是1278.8 HV0.2,提高到球墨铸铁基体的5倍以上。

关键词 激光熔覆钴基合金TiC微观组织硬度    
Abstract

Ductile cast iron, with excellent comprehensive mechanical properties, is widely used manufacturing traction wheel, crankshaft, cylinder liner, etc.. However, in the harsh environment, it often leads to failure due to the serious surface wear. At present, the repair methods for the damaged parts are mainly thermal spraying, deposit welding and other methods, but the properties and application effect of the repaired parts need to be improved. In order to significantly improve the surface properties of ductile cast iron, the 30%TiC/Co-based alloy cladding layer prepared by laser cladding is put forward on the surface of ductile cast iron in this work. The microstructure, composition, phase, hardness of the laser cladding layer are investigated and analyzed by OM, SEM, EDS, XRD, TEM and MHV2000 digital microhardness tester. The results show that the cladding layer can be integrated metallurgically with the nodular graphite cast iron matrix. The cladding layer consists of a surface layer of dendritic crystals and an internal cellular crystal. The primary phase of TiC from the melt is precipitated in situ during the solidification after laser heating. The amount of the primary TiC is gradually increased from the inner layer to the surface layer. Meanwhile, the undissolved TiC is dispersively distributed among the dendrites. The laser cladding layer is mainly composed of γ-Co, TiC, CoCx and a small amount of Cr7C3. The hardness maximum of the cladding layer is 1278.8 HV0.2, up to 5 times more than the hardness of the nodular graphite cast iron matrix.

Key wordslaser cladding    Co-based alloy    TiC    microstructure    hardness
收稿日期: 2016-07-07      出版日期: 2017-03-03

引用本文:

童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
Wenhui TONG,Zilong ZHAO,Xinyuan ZHANG,Jie WANG,Xuming GUO,Xinhua DUAN,Yu LIU. Microstructure and Properties of TiC/Co-Based Alloyby Laser Cladding on the Surface of NodularGraphite Cast Iron. Acta Metall Sin, 2017, 53(4): 472-478.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00288      或      http://www.ams.org.cn/CN/Y2017/V53/I4/472

图1  激光熔覆层横截面的宏观形貌和微观组织
图2  球墨铸铁表面30%TiC/钴基合金激光熔覆层横截面组织形貌
图3  熔覆层横截面线扫描方向和元素分布
图4  激光熔覆层横截面SEM像和EDS结果
图5  30%TiC/钴基合金熔覆层的XRD谱
图6  30%TiC/钴基合金熔覆层中增强相的TEM像及SAED谱
图7  熔覆层横截面显微硬度分布
[1] Fang G R, Wang Y Z.The birth, application, tendency of technology development——The one of the most important technology progresses of the material science of the 20th century[J]. Mod. Cast Iron, 2000, (1): 3
[1] (房贵如, 王云昭. 现代球墨铸铁的诞生、应用及技术发展趋势——20世纪材料科学最重大的技术进展之一[J]. 现代铸铁, 2000, (1): 3)
[2] Gao B.Experiment research on laser cladding repairing technology based on multiple-cladding [D]. Shanghai: Shanghai Jiao Tong University, 2010
[2] (高宾. 基于复合堆焊的激光熔覆修复技术的实验研究 [D]. 上海交通大学, 2010)
[3] Xie Y T, Wu G H, Wang C X, et al.Study on alloy ductile iron air-cooled roller repaired by laser cladding[J]. Mater. Heat Treat. Technol., 2012, 41(24): 168
[3] (谢雨田, 吴光辉, 王春霞等. 激光熔覆修复合金球墨铸铁风冷辊的研究[J]. 热加工工艺, 2012, 41(24): 168)
[4] Shan J G, Zhang D, Ren J L.Study on the quality of high power density focused light beam powder surfacing[J]. Chin. J. Mechanical Eng., 2001, 37(10): 47
[4] (单际国, 张迪, 任家烈. 高能密度聚焦光束粉末堆焊质量的研究[J]. 机械工程学报, 2001, 37(10): 47)
[5] Pei Y T.In-situ gradient coating of TiCp/Ni alloy by laser cladding and its mechanism[J]. Acta Metall. Sin., 1998, 34: 987
[5] (裴宇韬. 激光熔覆TiCp/Ni合金自生梯度涂层及其自生机制[J]. 金属学报, 1998, 34: 987)
[6] Zhang J, Liu J C, Zhang F Q, et al.Fe-Cr-Si-B coating by laser cladding on nodular cast iron[J]. Trans. Mater. Heat Treat., 2010, 31(5): 133
[6] (张静, 刘继常, 张福全等. 球墨铸铁表面激光熔覆Fe-Cr-Si-B涂层[J]. 材料热处理学报, 2010, 31(5): 133)
[7] Li Y L, Du D M, Wang L.Microstructure and properties of surface laser cladding Fe-base alloy layer on ductile cast iron[J]. Mater. Mech. Eng., 2011, 35(10): 16
[7] (李养良, 杜大明, 王利. 球墨铸铁表面激光熔覆铁基合金层的组织与性能[J]. 机械工程材料, 2011, 35(10): 16)
[8] Zhang Y F, Yan Y T, Sun Z L.Wear characteristics of Ni-based super-alloy onto CrMo cast iron by laser cladding[J]. Lubric. Eng., 2007, 32(7): 108
[8] (张云凤, 闫玉涛, 孙志礼. 铸铁CrMo表面激光熔覆Ni基高温合金粉末的磨损特性[J]. 润滑与密封, 2007, 32(7): 108)
[9] Yang J X, Zuo T C, Xu W Q, et al.The research of laser cladding Co-base alloy coating on ductile cast iron[J]. Laser Technol., 2006, 30: 517
[9] (杨胶溪, 左铁钏, 徐文清等. 球墨铸铁表面激光熔覆钴基合金涂层的研究[J]. 激光技术, 2006, 30: 517)
[10] Xu W X, Zhang Q L, Yao J H.Research on high-temperature wear resistance of laser cladding Co-based WC composite coating on hot-forging die[J]. Appl. Laser, 2013, 33: 370
[10] (徐卫仙, 张群莉, 姚建华. 热锻模激光熔覆Co基WC涂层的高温磨损性能研究[J]. 应用激光, 2013, 33: 370)
[11] Li M X, He Y Z, Sun G X.Microstructure and wear resistance of laser clad cobalt-based alloy multi-layer coatings[J]. Appl. Surf. Sci., 2004, 230: 201
[12] Emamian A, Corbin S F, Khajepour A.Tribology characteristics of in-situ laser deposition of Fe-TiC[J]. Surf Coat Technol., 2012, 206: 4495
[13] Abboud J H, West D R F. In situ production of Ti-TiC composites by laser melting[J]. J. Mater. Sci. Lett., 1992, 11: 1675
[14] Zhang S, Wu W T, Wang M C, et al.In-situ synthesis and wear performance of TiC particle reinforced composite coating on alloy Ti6Al4V[J]. Surf. Coat Technol., 2001, 138: 95
[15] Man H C, Zhang S, Cheng F T, et al.Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding[J]. Scr. Mater., 2001, 44: 2801
[16] Nga P T H. Laser cladding TiC particles reinforced Co-based alloy coating on H13 steel surface and its high-temperature wear property [D]. Kunming: Kunming University of Science and Technology, 2013
[16] (范氏红娥. H13钢表面激光熔覆TiC/Co基涂层及其高温磨损性能研究 [D]. 昆明: 昆明理工大学, 2013)
[17] Zhao W Y.Research on microstructure and properties of Stellite 6 coatings by laser cladding on 2Cr12MoV [D]. Shanghai: Shanghai Jiao Tong University, 2015
[17] (赵文雨. 2Cr12MoV表面激光熔覆Stellite 6涂层的组织及性能研究 [D]. 上海: 上海交通大学, 2015)
[18] Tu Y, Zhang Y Z, Xi M Z.Investigation of nickel-based alloy coating on stainless steel by laser cladding[J]. Chin. J. Rare Met., 2008, 32: 598
[18] (涂义, 张永忠, 席明哲. 不锈钢表面激光熔覆镍基合金层研究[J]. 稀有金属, 2008, 32: 598)
[19] Wang C Q, Liu H X, Zhou R.Characteristic behaviors of particle phases in NiCrBSi-TiC composite coating by laser cladding assisted by mechanical vibration[J]. Acta Metall. Sin., 2013, 49: 221
[19] (王传琦, 刘洪喜, 周荣. 机械振动辅助激光熔覆NiCrBSi-TiC复合涂层中颗粒相行为特征 [J]. 金属学报, 2013, 49: 221)
[20] He L H, Zhou F, Yang H Y.Research of in situ synthesis of TiC-TiB2 reinforced Co-based composite coating by laser cladding[J]. Laser Technol., 2013, 37: 306
[20] (何良华, 周芳, 杨蕙瑶. 激光熔覆原位合成TiC-TiB2增强钴基复合涂层的研究[J]. 激光技术, 2013, 37: 306)
[21] Qiu X L.TiC based cermet coating produced by powder feeding laser cladding[J]. Heat Treat., 2006, 35(5): 19
[21] (邱小林. 激光熔覆TiC金属基陶瓷涂层的研究[J]. 热加工工艺, 2006, 35(5): 19)
[22] Zhang S, Zhang C H, Wu W, et al.An in situ formed TiC particle reinforcement composite coating induced by laser melting on surface of alloy Ti6Al4V and its wearing performance[J]. Acta Metall. Sin., 2001, 37: 315
[22] (张松, 张春华, 吴维等. Ti6Al4V表面激光熔覆原位自生TiC颗粒增强钛基复合材料及摩擦磨损性能[J]. 金属学报, 2001, 37: 315)
[23] Li Q, Li D Z, Qian B N.Progress of dendritic morphology evolution during solidification process[J]. Mater. Rev., 2004, 18(4): 5
[23] (李强, 李殿中, 钱百年. 凝固过程中枝晶组织形貌演变模拟进展[J]. 材料导报, 2004, 18(4): 5)
[24] Li M X, He Y Z, Sun G X.Microstructure of laser cladding Co-based alloy on Ni-based super alloy[J]. Trans. China Welding Inst., 2002, 23(6): 17
[24] (李明喜, 何宜柱, 孙国雄. Ni基高温合金表面激光熔覆Co基合金的组织[J]. 焊接学报, 2002, 23(6): 17)
[25] Wang X H, Zhang M, Zou Z D, et al.Microstructure and properties of laser cladding TiCp /Ni-based alloys composite coating[J]. Chin. J. Mechanical Eng., 2003, 39(2): 37
[25] (王新洪, 张敏, 邹增大等. 激光熔覆TiCp /Ni基合金复合涂层的显微组织与性能[J]. 机械工程学报, 2003, 39(2): 37)
[26] He Y Z, Si S H. Xu K, et al.Effect of Cr3C2 particles on microstructure and corrosion-wear resistance of laser cladding Co-based alloy coating[J]. China J. Lasers, 2004, 31: 1143
[26] (何宜柱, 斯松华, 徐琨等. Cr3C2对激光熔覆钴基合金涂层组织与性能的影响[J]. 中国激光, 2004, 31: 1143)
[27] Tong W H, Zhao Z L, Wang J, et al.Microstructure and property of laser cladding cobalt based alloy coating on ductile cast iron[J]. Chin. J. Rare Met., 2016, (9): 22
[27] (童文辉, 赵子龙, 王杰等. 球墨铸铁表面激光熔覆钴基合金涂层的组织与性能[J]. 稀有金属, 2016, (9): 22)
[28] Li J, Zhong M L, Liu W J.Microstructures and properties of laser-clad in situ particle reinforced Ni-base composite coating on 55Mn steel[J]. Heat Trea.t Met., 2006, 31(11): 8
[28] (李晶, 钟敏霖, 刘文今. 55Mn钢表面激光熔覆原位析出颗粒增强Ni基复合涂层的组织与性能[J]. 金属热处理, 2006, 31(11): 8)
[1] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[2] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[3] 李博,张忠铧,刘华松,罗明,兰鹏,唐海燕,张家泉. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变[J]. 金属学报, 2019, 55(6): 762-772.
[4] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[5] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[6] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[7] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[8] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[9] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[10] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[11] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[12] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[13] 熊守美, 杜经莲, 郭志鹏, 杨满红, 吴孟武, 毕成, 曹永友. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究[J]. 金属学报, 2018, 54(2): 174-192.
[14] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[15] 于菁, 王继杰, 倪丁瑞, 肖伯律, 马宗义, 潘兴龙. 电子束熔丝沉积快速成形2319铝合金的微观组织与力学性能[J]. 金属学报, 2018, 54(12): 1725-1734.