Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 325-334    DOI: 10.11900/0412.1961.2016.00282
  本期目录 | 过刊浏览 |
激光修复300M钢的组织及力学性能研究
刘丰刚,林鑫(),宋衎,宋梦华,韩一帆,黄卫东
西北工业大学凝固技术国家重点实验室 西安 710072
Microstructure and Mechanical Properties of LaserForming Repaired 300M Steel
Fenggang LIU,Xin LIN(),Kan SONG,Menghua SONG,Yifan HAN,Weidong HUANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(8688 KB)   HTML
摘要: 

采用激光立体成形技术进行了300M钢修复实验,利用XRD、SEM及动态散斑等手段研究了激光成形修复300M钢沉积态和热处理态的组织及力学性能特征。结果表明,300M钢基材区由马氏体、贝氏体及少量残余奥氏体组成;修复区由顶部的贝氏体组织,中部的马氏体和贝氏体的混合组织,到底部的回火马氏体组织呈现连续转变;热影响区则呈现为不均匀的马氏体组织。经过淬火+回火处理后,各区域的组织变得均匀,均为回火马氏体和贝氏体的混合组织。修复后沉积态试样的拉伸性能远低于锻件标准。但经过热处理后,修复试样的各项力学性能指标均有显著提高。应力-应变测试结果表明,沉积态和热处理态试样在弹性变形阶段的应变都是均匀增加的,而超过最大拉伸强度后,局部应变在修复区急剧增加。这与试样的组织协调变形能力及应变硬化指数有关。

关键词 激光成形修复激光增材制造300M钢显微组织力学性能应力-应变分布    
Abstract

Laser forming repairing (LFR) technology is developed from the laser additive manufacturing, which has a high potential in high strength steel structures' repairing. 300M steel has been widely used in aviation and aerospace vehicles, to provide a high strength for aircraft landing gear and high strength bolts components, which in turn leads to a quick damage due to the severe service environment. If these damaged components can be repaired rapidly, the considerable savings in materials and costs can be achieved. In this work, the microstructure and mechanical properties of the LFRed 300M steel have been investigated. Results showed that the LFRed area can be clearly divided into three areas: the substrate zone (SZ), heat affected zone (HAZ) and repaired zone (RZ). The SZ was consisted of the mixture of martensite, bainite and a small amount of retained austenite. The HAZ presented an uneven martensite. The RZ presented an obvious heterogeneous microstructure, and the bainite, the mixture of martensite and bainite, and tempered martensite from the top to the bottom. After heat treatment, the microstructure became uniform with mixed tempered martensite and bainite. The tensile strength of the as-deposited LFRed 300M steel was far lower than those of the substrate. Its tensile strength and yield strength were 1459 MPa and 1163 MPa, respectively. After heat treatment, tensile strength (1965 MPa), yield strength (1653 MPa), elongation (11.7%) and reduction of area (38.4%) increased significantly and reached the same level of the substrate. Furthermore, compared to the as-deposited sample, the local strain of the RZ increased to 53% after heat treatment, and an obvious necking and breaking up happened as well. The strain hardening exponent of SZ and RZ were 0.1548 and 0.1138, which could be closely related to the compatible deformation capability.

Key wordslaser forming repairing    laser additive manufacturing    300M steel    microstructure    mechanical property    stress and strain distribution
收稿日期: 2016-07-05      出版日期: 2016-12-14
基金资助:国家自然科学基金项目Nos.51323008、51475380和51501154,高等学校学科创新引智计划项目No.08040

引用本文:

刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
Fenggang LIU,Xin LIN,Kan SONG,Menghua SONG,Yifan HAN,Weidong HUANG. Microstructure and Mechanical Properties of LaserForming Repaired 300M Steel. Acta Metall Sin, 2017, 53(3): 325-334.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00282      或      http://www.ams.org.cn/CN/Y2017/V53/I3/325

图1  拉伸试样截取及加工示意图
图2  激光成形修复300M钢沉积态不同部位的显微组织
图3  沉积态试样不同部位的温度场演变示意图及显微组织形成示意图
图4  激光成形修复300M钢热处理态不同区域的XRD谱
图5  激光成形修复300M钢热处理态不同部位的显微组织
图6  激光成形修复300M钢不同状态的室温拉伸断口形貌
图7  沉积态试样室温拉伸的应力-应变曲线、拉伸过程中沿中心线的应变分布及相应的局部应变分布
图8  热处理态试样室温拉伸的应力-应变曲线、拉伸过程中沿中心线的应变分布及相应的局部应变分布
Sample Tensile Yield Elongation Reduction Fracture location
strength strength % of area
MPa MPa %
Forging standard ≥1925 ≥1630 ≥12.5 ≥50.6 -
Substrate 1993 1624 12.1 41.2 -
As-deposited LFRed 1459±11 1163±73 5.8±0.8 14.6±0.3 Repaired zone
Heat-treated LFRed 1965±12 1653±4 11.7±0.6 38.4±3.2 Repaired zone
表1  300M钢不同状态的室温力学性能
[1] Youngblood J L, Raghavan M.Correlation of microstructure with mechanical properties of 300M steel[J]. Metall. Trans., 1977, 8A: 1439
[2] Tomita Y, Okawa T.Effect of microstructure on mechanical properties of isothermally bainite-transformed 300M steel[J]. Mater. Sci. Eng., 1993, A172: 145
[3] Zhang S S, Li M Q, Liu Y G, et al.The growth behavior of auste-nite grain in the heating process of 300M steel[J]. Mater. Sci. Eng., 2011, A528: 4967
[4] Zhang H P, Wang C X, Du X.Aircraft landing gear with the development of 300M ultra high strength steel and research[J]. J. Harbin Univ. Sci. Technol., 2011, 16(6): 73
[4] (张慧萍, 王崇勋, 杜煦. 飞机起落架用300M超高强钢发展及研究现状[J]. 哈尔滨理工大学学报, 2011, 16(6): 73)
[5] Huang W D, Lin X, Chen J, et al.Laser Solid Forming [M]. Xi'an: Northwestern Polytechnical University Press, 2007: 326
[5] (黄卫东, 林鑫, 陈静等. 激光立体成形 [M]. 西安: 西北工业大学出版社, 2007: 326)
[6] Gadag S P, Srinivasan M N, Mordike B L.Effect of laser processing parameters on the structure of ductile iron[J]. Mater. Sci. Eng., 1995, A196: 145
[7] O?oro J, Ranninger C.Fatigue behaviour of laser welds of high-strength low-alloy steels[J]. J. Mater. Process. Technol., 1997, 68: 68
[8] Kattire P, Paul S, Singh R, et al.Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications[J]. J. Manuf. Process., 2015, 20: 492
[9] Hu Y P, Chen C W, Mukherjee K.Development of a new laser cla-dding process for manufacturing cutting and stamping dies[J]. J. Mater. Sci., 1998, 33: 1287
[10] Leunda J, Soriano C, Sanz C, et al.Laser cladding of vanadium-carbide tool steels for die repair[J]. Phys. Procedia, 2011, 12: 345
[11] Lin X, Cao Y Q, Wu X Y, et al.Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel[J]. Mater. Sci. Eng., 2012, A553: 80
[12] Li L J.Repair of directionally solidified superalloy GTD-111 by laser-engineered net shaping[J]. J. Mater. Sci., 2006, 41: 7886
[13] Zhang Z H, Lin P Y, Zhou H, et al.Microstructure, hardness, and thermal fatigue behavior of H21 steel processed by laser surface remelting[J]. Appl. Surf. Sci., 2013, 276: 62
[14] Tong X, Dai M J, Zhang Z H.Thermal fatigue resistance of H13 steel treated by selective laser surface melting and CrNi alloying[J]. Appl. Surf. Sci., 2013, 271: 373
[15] Xu Q D, Lin X, Song M H, et al.Microstructure of heat-affected zone of laser forming repaired 2Cr13 stainless steel[J]. Acta Metall. Sin., 2013, 49: 605
[15] (徐庆东, 林鑫, 宋梦华等. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49: 605)
[16] Liu Q, Wang Y D, Zheng H, et al.TC17 titanium alloy laser melting deposition repair process and properties[J]. Opt. Laser Technol., 2016, 82: 1
[17] Dinda G P, Dasgupta A K, Mazumder J.Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability[J]. Mater. Sci. Eng., 2009, A509: 98
[18] Cong D L, Zhou H, Ren Z N, et al.The thermal fatigue resistance of H13 steel repaired by a biomimetic laser remelting process[J]. Mater. Des., 2014, 55: 597
[19] Sun S D, Liu Q C, Brandt M, et al.Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel[J]. Mater. Sci. Eng., 2014, A606: 46
[20] Kang M K, Yang Y Q, Zhang X Y, et al.Bainitic transformations in silicon-containing steels[J]. Acta Metall. Sin., 1996, 32: 897
[20] (康沫狂, 杨延清, 张喜燕等. 硅钢中的贝氏体及其转变模型[J]. 金属学报, 1996, 32: 897)
[21] Wang Y D, Tang H B, Fang Y L, et al.Effect of heat treatment on microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Mater. Sci. Eng., 2010, A528: 474
[22] Zhang L, Zhang Y F, Huo L X, et al.Microstructure and properties of 30CrMnSiNi2A steel electron beam welded joints[J]. Trans. China Welding Inst., 2002, 23(1): 73
[22] (张莉, 张玉凤, 霍立兴等. 30CrMnSiNi2A钢焊接接头热处理后的组织与性能[J]. 焊接学报, 2002, 23(1): 73)
[23] Liu F G, Li T J, Wang C X, et al.Effect of postweld heat treatment on microstructure and mechanical properties of 05Cr17Ni4Cu4Nb steel weld joint[J]. Heat Treat. Met., 2010, 35(11): 65
[23] (刘福广, 李太江, 王彩侠等. 焊后热处理对05Cr17Ni4Cu4Nb钢焊接接头组织与性能的影响[J]. 金属热处理, 2010, 35(11): 65)
[24] Qi C L.Effects of heat treatment on microstructure and mechanical properties of D406A steel welded joint [D]. Harbin: Harbin Institute of Technology, 2012
[24] (祁成雷. 热处理对D406A钢焊接接头微观组织和力学性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[25] Wang C C.Properties of Materials [M]. Beijing: Beijing University of Technology Press, 2001: 21
[25] (王从曾. 材料性能学 [M]. 北京: 北京工业大学出版社, 2001: 21)
[1] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[2] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[3] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[4] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[5] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[6] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[7] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[8] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[9] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[10] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[11] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[12] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2): 171-180.
[13] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[14] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[15] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.