Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1333-1344    DOI: 10.11900/0412.1961.2016.00276
  本期目录 | 过刊浏览 |
Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*
王俭秋,黄发,柯伟()
中国科学院金属研究所中国科学院核用材料与安全评价重点实验室, 沈阳 110016
CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER
Jianqiu WANG,Fa HUANG,Wei KE()
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(11260 KB)   HTML
  
摘要: 

利用多种分析手段深入分析了Inconel 690TT和Incoloy 800MA合金蒸汽发生器管材及其在高温高压水环境中的腐蚀行为. 结果表明, 沿管材厚度方向从内壁至外壁, Inconel 690TT合金管材Σ3晶界偏离理想晶界的程度逐渐增大, Kernel平均取向差(KAM)也逐渐增大, 管材外壁为最薄弱区; Incoloy 800MA合金管材Σ3晶界偏离理想晶界的程度均匀, 且主要集中于0~1°的小偏差范围内, KAM应变的变化也趋于平缓. 溶氧的高温纯H2O中, Inconel 690TT合金表面腐蚀产物为双层膜结构, 外层为富Fe尖晶石与NiO小颗粒, 内层膜为NiO相且疏松多孔, 不能对基体起到良好的保护作用, 局部区域腐蚀深度可达716 nm; Incoloy 800MA合金表面腐蚀产物为双层膜结构, 外层为大颗粒状尖晶石相, 内层膜为小颗粒尖晶石相, Cr在内层膜与基体的界面富集, 平均腐蚀深度仅约为150 nm. 相同条件下, 溶氧的高温纯H2O中Incoloy 800MA合金的内层膜厚度显著小于Inconel 690TT合金. 因此, 在溶氧高温高压纯H2O环境中, Cr发生溶解, Incoloy 800MA合金比Inconel 690TT合金耐蚀性更优.

关键词 Inconel 690TT合金Incoloy 800MA合金高温高压水氧化膜    
Abstract

Inconel 690TT and Incoloy 800MA have been widely used as steam generator heat transfer tubes in nuclear power plants (NPPs). The corrosion behaviors of these two alloys in high temperature high pressure water have to be fully addressed. This work systematically studied the microstructures of the as-received Inconel 690TT and Incoloy 800MA steam generator tubes (SGTs) and compared the oxide films formed on the tubing materials in high temperature water using several analytical methods including SEM, EBSD, GIXRD, SAED and STEM. The results show that from outer surface to inner surface of Inconel 690TT SGTs, the deviation degrees from the ideal Σ3 misorientation and the average value of Kernel average misorientation (KAM) gradually increase. The outer surface of Inconel 690TT SGTs are weakest. For Incoloy 800MA SGTs, the deviation degrees from the ideal Σ3 misorientation are within 0~1°, and the change of KAM average value is small. Exposed to 325 ℃ pure water containing 0.75×10-6 O2 for 720 h, oxide films of both Inconel 690TT SGTs and Incoloy 800MA SGTs have duplex structure. On Inconel 690TT SGTs, the outer layer is Fe-rich spinel and small NiO particles; the inner layer mainly is NiO, porous and less protective with the thickness of 716 nm. On Incoloy 800MA SGTs, the outer layer is big polyhedral spinel; the inner layer is small polyhedral spinel and protective with the average thickness of 150 nm; Cr is enriched at the interface between inner oxide layer and matrix. In high temperature water with dissolved oxygen, due to the preferential dissolution of Cr, Incoloy 800MA is more corrosion resistant than Inconel 690TT.

Key wordsInconel 690TT    Incoloy 800MA    high temperature high pressure water    oxide film
收稿日期: 2016-07-01      出版日期: 2016-08-02
:     
基金资助:* 国家杰出青年基金资助项目51025104

引用本文:

王俭秋, 黄发, 柯伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*[J]. 金属学报, 2016, 52(10): 1333-1344.
Jianqiu WANG, Fa HUANG, Wei KE. CORROSION BEHAVIORS OF INCONEL 690TT AND INCOLOY 800MA STEAM GENERATOR TUBES IN HIGH TEMPERATURE HIGH PRESSURE WATER. Acta Metall Sin, 2016, 52(10): 1333-1344.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00276      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1333

Alloy Cr Fe Mn Ti S P C N Si Cu Co Al Ni
690TT 29.02 10.28 0.30 0.33 0.001 0.009 0.018 0.0234 0.31 0.010 0.015 0.16 Bal.
800MA 21.90 43.10 0.49 0.46 0.001 0.013 0.017 0.0150 0.45 0.015 0.010 0.28 Bal.
表1  Inconel 690TT和Incoloy 800MA合金管材的化学成分
图1  Inconel 690TT合金管横截面显微组织的SEM像
图2  Incoloy 800MA合金管横截面显微组织的SEM像
图3  Inconel 690TT合金管材横截面的EBSD晶界分布图
图4  Incoloy 800MA合金管材横截面的EBSD晶界分布图
图5  Inconel 690TT和Incoloy 800MA合金管材的晶界特征分布
图6  Inconel 690TT和Incoloy 800MA合金管材的Σ3晶界与其理想结构之间偏差角的分布
图7  Inconel 690TT和Incoloy 800MA合金管沿管径方向Kernel平均取向差(KAM)平均值
图8  Inconel 690TT合金管材外壁截面形貌STEM像和相应的SAED谱
图9  Incoloy 800MA合金管材外壁截面形貌STEM像和相应的SAED谱
图10  Inconel 690TT合金在325 ℃, 氧浓度为0.75×10-6的高温高压纯H2O中浸泡720 h后表面腐蚀产物的SEM像
图11  图10b中3个位置的EDS分析
图12  Inconel 690TT合金在325 ℃, 氧浓度为0.75×10-6的高温高压纯H2O中浸泡720 h后表面腐蚀产物的GIXRD谱
图13  Inconel 690TT合金在325 ℃, 氧浓度为0.75×10-6的高温高压纯H2O中浸泡720 h后形成的氧化膜截面形貌的STEM像和相应的SAED谱
Position Ni Cr Fe O
1 56.16 1.05 0.97 41.80
2 49.63 0.78 1.25 48.32
3 31.05 9.42 3.84 55.66
4 48.83 0.58 1.16 49.41
5 48.46 1.55 1.96 48.01
表2  图13a中位置1~5处的EDS分析
图14  Inconel 690TT合金腐蚀产物截面形貌的FIB像
图15  Incoloy 800MA合金在325 ℃, 氧浓度为0.75×10-6的高温高压纯H2O中浸泡720 h后表面腐蚀产物的SEM像和氧化物颗粒的EDS分析
图16  Incoloy 800MA合金在325 ℃, 氧浓度为0.75×10-6的高温高压纯H2O中浸泡720 h后表面腐蚀产物的GIXRD谱
图17  Incoloy 800MA合金在325 ℃, 氧浓度为0.75×10-6的高温高压纯H2O中浸泡720 h后形成的氧化膜截面形貌的STEM像和相应的SAED谱
Position Ni Fe Cr O
1 12.06 24.47 3.23 60.21
2 12.72 22.78 3.61 60.87
3 11.15 20.18 5.56 63.08
4 13.73 21.05 4.33 60.87
5 11.34 22.32 4.44 61.88
6 15.35 20.92 4.74 58.97
7 15.41 23.63 4.61 56.33
表3  图17a中位置1~7处的EDS分析
图18  Incoloy 800MA合金在325 ℃, 氧浓度为0.75×10-6的高温高压纯H2O中浸泡720 h后形成的氧化膜的SEM像和EDS分析
图19  Inconel 690TT和Incoloy 800MA合金在含氧高温高压水中的氧化示意图
[1] Dutta R S, Tewari R, De P K.Corros Sci, 2007; 49: 303
[2] Lee K H, Cragnolino G, MacDonald D D.Corrosion, 1985; 41: 540
[3] Cels J R.Corrosion, 1978; 34: 198
[4] Gadiyar H S.In: Symposium on Current Trends in Water Chemistry of Nuclear and Thermal Power Plants and Other Related Units (CURTWAC-95), Bombay, India, 1995: 9
[5] Pathania R S, Cleland R D.Corrosion, 1985; 41: 575
[6] Chen C M, Aral K.EPRI NP-3137, 1983; 2: 5
[7] Xiao J M.Corrosion Theory—Material Corrosion and its Control Methods. Beijing: Chemical Industry Press, 1994: 1
[7] (肖纪美. 腐蚀总论——材料的腐蚀及其控制方法. 北京: 化学工业出版社, 1994: 1)
[8] Copson H R, Cheng C F.Corrosion, 1957; 13: 397
[9] Ledjeff K, Rahmel A, Schorr M.Werkst Korros, 1979; 30: 767
[10] Angeliu T, Was G.J Electroch Soc, 1993; 140: 1877
[11] Carrette F, Lafont M, Chatainier G, Guinard L, Pieraggi B.Surf Interface Anal, 2002; 34: 135
[12] MacHet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P.Surf Interface Anal, 2002; 34: 197
[13] Ziemniak S E, Hanson M.Corros Sci, 2003; 45: 1595
[14] Ziemniak S E, Hanson M.Corros Sci, 2006; 48: 498
[15] Sennour M, Marchetti L, Martin F, Perrin S, Molins R, Pijolat M.J Nucl Mater, 2010; 402: 147
[16] Scott P M, Combrade P.ASM Handbook. Vol.13C, Materials Park, OH: ASM International, 2006: 362
[17] Li X H, Huang F, Wang J Q, Han E-H, Ke W.Acta Metall Sin, 2011; 47: 847
[17] (郦晓慧, 黄发, 王俭秋, 韩恩厚, 柯伟. 金属学报, 2011; 47: 847)
[18] Shimada M, Kokawa H, Wang Z, Sato Y, Karibe I.Acta Mater, 2002; 50: 2331
[19] Gertsman V, Bruemmer S M.Acta Mater, 2001; 49: 1589
[20] Peng Q, Shoji T, Yamauchi H, Takeda Y.Corros Sci, 2007; 49: 2767
[21] Crawford D C, Was G S.Metall Trans, 1992; 23A: 1195
[22] Gertsman V Y, Tangri K, Valiev R.Acta Metall Mater, 1994; 42: 1785
[23] Pan Y, Adams B, Olson T, Panayotou N.Acta Mater, 1996; 44: 4685
[24] Lemire R, McRae G.J Nucl Mater, 2001; 294: 141
[25] Kim Y, Andresen P.Corrosion, 2003; 59: 584
[26] Kuang W, Wu X, Han E-H, Rao J.Corros Sci, 2011; 53: 3853
[27] Tan L, Rakotojaona L, Allen T R, Nanstad R K, Busby J T.Mater Sci Eng, 2011; A528: 2755
[28] Rothman S J, Nowicki L J, Murch G E.J Phys, 1980; 10F: 383
[29] Kim Y J.Corrosion, 2000; 56: 389
[30] Robertson J.Corros Sci, 1991; 32: 443
[31] Terachi T, Arioka K.Corrosion 2006, San Diego, March 12-16, paper No.06608
[32] Staehle R W, Gorman J A.Corrosion, 2003; 59: 931
[33] Wang J Q, Li X H, Huang F, Zhang Z M, Wang J Z, Staehle R W.Corrosion, 2014; 70: 598
[1] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.
[2] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[3] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[4] 欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
[5] 苟少秋,周邦新,谢世敬,徐龙,姚美意,李强. Zr-4合金在LiOH水溶液中腐蚀时氧化膜生长各向异性的研究*[J]. 金属学报, 2015, 51(8): 993-1000.
[6] 吴欣强, 谭季波, 徐松, 韩恩厚, 柯伟. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2015, 51(3): 298-306.
[7] 彭以超, 张麦仓, 杜晨阳, 董建新. 服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究[J]. 金属学报, 2015, 51(1): 11-20.
[8] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[9] 章海霞, 李中奎, 周廉, 许并社, 王永祯. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50(12): 1529-1537.
[10] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[11] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[12] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[13] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
[14] 郦晓慧 王俭秋 韩恩厚 柯伟. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究[J]. 金属学报, 2012, 48(8): 941-950.
[15] 谢兴飞 张金龙 朱莉 姚美意 周邦新 彭剑超. Zr-0.7Sn-0.35Nb-0.3Fe-xGe合金在高温高压LiOH 水溶液中耐腐蚀性能的研究[J]. 金属学报, 2012, 48(12): 1487-1494.