Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 123-128    DOI: 10.11900/0412.1961.2016.00274
  本期目录 | 过刊浏览 |
一种第二相析出-温度-时间曲线计算模型的建立
杨永,王昭东(),李天瑞,贾涛,李小琳,王国栋
东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
A Model for Precipitation-Temperature-Time Curve Calculation
Yong YANG,Zhaodong WANG(),Tianrui LI,Tao JIA,Xiaolin LI,Guodong WANG
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
全文: PDF(913 KB)   HTML
摘要: 

基于经典形核长大理论和Johnson-Mehl-Avrami方程,假定过饱和沉淀的球形第二相分子式为Mx1Mv2M1-x-v3CyN1-y,采用平均扩散速率表征合金原子对第二相形核长大过程影响的思想,建立了计算第二相析出-温度-时间(PTT)曲线的模型。基于Adrian模型提出计算多元系全固溶温度的方法,针对Fe-0.09C-0.011Ti-0.03V-0.025Nb (质量分数,%)钢计算得到的铁素体区PTT曲线呈典型的“C”形,得到的最快析出温度为628 ℃,其值与实验结果吻合。本模型计算效率高,计算析出相体积自由能变化时无需求取复合相的溶解度公式;适用性高,适用于不同基体中不同类型析出相PTT曲线的计算。

关键词 微合金钢经典形核长大理论析出相析出-温度-时间(PTT)曲线    
Abstract

Nanometer precipitation is of great importance to the mechanical properties of the low carbon micro-alloyed steel. Precipitation process is controlled by the driving force for precipitation and the diffusion rate of atoms. Under the influence of these two factors, the fastest precipitation temperature for (Mx1Mv2M1-x-v3)(CyN1-y) phase is available, which is also known as nose temperature. The maximum number density of precipitates can be obtained through isothermal treatment at the nose temperature. The most effective tool for getting the value of nose temperature is the precipitation-temperature-time (PTT) curve. Due to that the diffusivity of substitutional atom is several orders of magnitude smaller than that of interstitial atom, the nucleation process and growth process of complex precipitation are controlled by the diffusion of substitutional atoms. So far no model has been established for calculating PTT curve of complex precipitation. All the existing models are established for simple precipitation. In this work, a kinetic model, based on the classical nucleation and growth theories and Johnson-Mehl-Avrami equation, employing Adrian thermodynamic model and L-J model, using average diffusivity to demonstrate the effects of forming elements on precipitation process, has been adapted to describe the precipitation kinetics following high temperature deformation in micro-alloy steels alloying with V, Nb and Ti. Using this model, the PTT curves for the kinetics of second phase were easily obtained. In the experiment, within the temperature range from 660 to 540 ℃, the nose temperature of carbonitride precipitation is equal to or slightly higher than 620 ℃. The value of nose temperature estimated from PTT curve is 628 ℃ which is consistent with the experimental observation. There are enough reasons to believe that the model proposed in this work can estimate accurately the nose temperature information in relatively small experiment case. This model has outstanding advantages in comparison with existing models: the mole fraction of precipitation and the driving force for precipitation per unit volume ?Gv can be calculated directly without calculating the solubility formula of complex carbide in matrix; The proposed model can also be used to calculate the absolute solution temperature and the constituent of initial complex precipitation forming at critical temperature of precipitation, which can be used as the iterative initial values for calculating the equilibrium information between matrix and precipitation at relatively low temperatures.

Key wordsmicro-alloyed steel,    classical nucleation and growth theory,    precipitation,    PTT curve
收稿日期: 2016-07-01      出版日期: 2016-11-28
基金资助:资助项目 国家自然科学基金项目No.51234002

引用本文:

杨永,王昭东,李天瑞,贾涛,李小琳,王国栋. 一种第二相析出-温度-时间曲线计算模型的建立[J]. 金属学报, 2017, 53(1): 123-128.
Yong YANG,Zhaodong WANG,Tianrui LI,Tao JIA,Xiaolin LI,Guodong WANG. A Model for Precipitation-Temperature-Time Curve Calculation. Acta Metall Sin, 2017, 53(1): 123-128.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00274      或      http://www.ams.org.cn/CN/Y2017/V53/I1/123

图1  不同温度下析出的热力学平衡信息
图2  复合析出相在铁素体中析出的临界晶核半径、临界形核功及相对沉淀析出时间随温度变化的曲线
[1] Okamoto R, Borgenstam A, [J]. Acta Mater., 2010, 58: 4783
[2] Wang T P, Kao F H, Wang S H, et al.Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel[J]. Mater. Lett., 2011, 65: 396
[3] Mao X P, Huo X D, Sun X J, et al.Strengthening mechanisms of a new 700MPa hot rolled Ti-microalloyed steel produced by compact strip production[J]. J. Mater. Process. Technol., 2010, 210: 1660
[4] Xu L, Shi J, Cao W Q, et al.Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement[J]. J. Mater. Sci., 2011, 46: 6384
[5] Han Y, Shi J, Xu L, et al.Effects of Ti addition and reheating quenching on grain refinement and mechanical properties in low carbon medium manganese martensitic steel[J]. Mater. Des, 2012, 34: 427
[6] Yong Q L, Ma M T, Wu B R.Microalloyed Steel-Physical and Mechanical Metallurgy [M]. Beijing: China Machine Press, 1989: 30
[6] (雍岐龙, 马鸣图, 吴宝榕. 微合金钢-物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 30)
[7] Enomoto M.Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy[J]. Acta Mater., 1999, 47: 3533
[8] Hutchinson C R, Zurob H S, Sinclair C W, et al.The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels[J]. Scr. Mater., 2008, 59: 635
[9] Wang X P, Zhao A M, Zhao Z Z, et al.Mechanical properties and characteristics of nanometer-sized precipitates in hot-rolled low-carbon ferritic steel[J]. Int. J. Miner. Metall. Mater., 2014, 21: 266
[10] Dutta B, Palmiere E J, Sellars C M.Modelling the kinetics of strain induced precipitation in Nb microalloyed steels[J]. Acta Mater., 2001, 49: 785
[11] Maugis P, Gouné M.Kinetics of vanadium carbonitride precipitation in steel: a computer model[J]. Acta Mater., 2005, 53: 3359
[12] Perrard F, Deschamps A, Maugis P.Modelling the precipitation of NbC on dislocations in α-Fe[J]. Acta Mater., 2007, 55: 1255
[13] Perez M, Courtois E, Acevedo D, et al.Precipitation of niobium carbonitrides in ferrite: Chemical composition measurements and thermodynamic modelling[J]. Phil. Mag. Lett., 2007, 87: 645
[14] Perez M, Dumont M, Acevedo-Reyes D.Implementation of classical nucleation and growth theories for precipitation[J]. Acta Mater., 2008, 56: 2119
[15] Yong Q L.Secondary Phase in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 146.
[15] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 146)
[16] Adrian H.Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium[J]. Mater. Sci. Technol., 1992, 8: 406
[17] Liu W J, Jonas J J.Nucleation kinetics of Ti carbonitride in microalloyed austenite[J]. Metall. Trans., 1989, 20A: 689
[18] Johnson W A, Mehl R F.Reaction kinetics in processes of nucleation and growth[J]. Trans. AIME, 1939, 135: 416
[19] Avrami M.Kinetics of phase change. I General theory[J]. J. Chem. Phys., 1939, 7: 1103
[20] Avrami M.Kinetics of phase change. II Transformation-time relations for random distribution of nuclei[J]. J. Chem. Phys., 1940, 8: 212
[21] Hillert M, Staffansson L I.The regular solution model for stoichiometric phases and ionic melts[J]. Acta Chem. Scand., 1970, 24: 3618
[22] Okaguchi S, Hashimoto T.Computer model for prediction of carbonitride precipitation during hot working in Nb-Ti bearing HSLA steels[J]. ISIJ Int., 1992, 32: 283
[23] Zener C.Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
[24] Li X L, Wang Z D, Deng X T, et al.Effect of final temperature after ultra-fast cooling on microstructural evolution and precipitation behavior of Nb-V-Ti bearing low alloy steel[J]. Acta Metall. Sin., 2015, 51: 784
[24] (李小琳, 王昭东, 邓想涛等. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响[J]. 金属学报, 2015, 51: 784)
[25] Quispe A, Medina S F, Gómez M, et al.Influence of austenite grain size on recrystallisation-precipitation interaction in a V-microalloyed steel[J]. Mater. Sci. Eng., 2007, A447: 11
[1] 张正延,柴锋,罗小兵,陈刚,杨才福,苏航. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791.
[2] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[3] 胡国栋, 王培, 李殿中, 李依依. 新型25Cr-20Ni奥氏体耐热不锈钢750 ℃持久实验过程中析出相演变[J]. 金属学报, 2018, 54(11): 1705-1714.
[4] 李晓林, 崔阳, 肖宝亮, 张大伟, 金钊, 程政. V-N微合金钢在线快速感应回火工艺中V(C, N)析出强化机制[J]. 金属学报, 2018, 54(10): 1368-1376.
[5] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[6] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[7] 何仙灵,杨庚蔚,毛新平,余驰斌,达传李,甘晓龙. Nb对Ti-Mo微合金钢连续冷却相变规律及组织性能的影响[J]. 金属学报, 2017, 53(6): 648-656.
[8] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[9] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[10] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[11] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[12] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[13] 郭文营,胡小强,马晓平,李殿中. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响*[J]. 金属学报, 2016, 52(7): 769-777.
[14] 王文辉,吴迪,陈荣石,娄长胜. 高温短时间时效处理对Mg-3Nd-1Zn合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 567-574.
[15] 张显峰,李国爱,陆政,于娟,郝敏. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响*[J]. 金属学报, 2016, 52(12): 1497-1502.