Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 90-96    DOI: 10.11900/0412.1961.2016.00271
  本期目录 | 过刊浏览 |
Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能
付全,沙玉辉(),和正华,雷蕃,张芳,左良
东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets
Quan FU,Yuhui SHA(),Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
全文: PDF(7277 KB)   HTML
摘要: 

通过调控冷轧压下率,在退火后获得3种不同的Fe81Ga19二元合金初次再结晶状态,采用XRD和EBSD宏微观织构分析技术研究了初次再结晶状态对高温退火后晶粒尺寸及织构的影响。结果表明:初次再结晶阶段形成更多的大尺寸η (<001>//RD)取向晶粒,有利于后续高温退火过程中的η取向晶粒择优长大甚至发生异常长大,最终在晶粒尺寸相对较小的再结晶组织中获得强η织构,饱和磁致伸缩系数可达到220×10-6

关键词 Fe81Ga19合金再结晶织构晶粒尺寸磁致伸缩    
Abstract

Fe-Ga alloys are attractive magnetostrictive materials due to large magnetostriction along <100> direction and high mechanical strength. However, sharp Goss ({110}<001>) texture and large magnetostriction coefficients were conventionally achieved by secondary recrystallization with centimeter-sized grains under the effects of inhibitor and surface energy, resulting in deteriorated mechanical properties. Texture optimization in relatively fine grained microstructure is an effective way to obtain excellent comprehensive properties. Cold rolling process can determine the difference in number and size of primary recrystallization grains among various texture components, and further influence the texture and grain size evolution during subsequent high temperature annealing. The present work aims to produce strong η texture (<001>//RD, rolling direction) in binary Fe-Ga sheet with relatively fine recrystallization grains by cold rolling parameter modification. Macro- and micro-texture analysis was applied to investigate the effects of primary recrystallization states on texture and grain size evolution during high temperature annealing in binary Fe-Ga sheet. The η grains can gain more numbers and relatively larger sizes in primary recrystallization stage, and preferably grow even abnormally during high temperature annealing. A sharp η texture and large magnetostriction coefficient are successfully developed in primarily and secondarily recrystallized sheets with relatively fine grains. The results provide a prospective route for the efficient recrystallization texture and grain size optimization in binary Fe-Ga and other bcc alloys.

Key wordsFe81Ga19 alloy    recrystallization texture    grain size    magnetostriction
收稿日期: 2016-07-01      出版日期: 2016-11-18
基金资助:资助项目 国家自然科学基金项目No.51671049和中央高校基本科研业务费专项资金项目No.L1502019

引用本文:

付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets. Acta Metall Sin, 2017, 53(1): 90-96.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00271      或      http://www.ams.org.cn/CN/Y2017/V53/I1/90

图1  Fe81Ga19冷轧和初次再结晶薄板的ODF φ2=0°和45°截面图
图2  Fe81Ga19薄板缓慢升温退火过程的ODF φ2=0°和45°截面图
图3  Fe81Ga19再结晶退火薄板主要织构组分的面积分数以及磁致伸缩变化曲线
图4  1200 ℃退火的Fe81Ga19薄板主要织构组分取向成像图和平均晶粒尺寸图
图5  缓慢升温至950 ℃的70%轧制Fe81Ga19薄板的取向成像图
图6  Fe81Ga19初次再结晶薄板主要取向在不同晶粒尺寸范围的数量分布图
图7  70%轧制Fe81Ga19薄板部分再结晶组织的EBSD分析
[1] Clark A E, Hathaway K B, Wun-Fogle M, et al.Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys[J]. J. Appl. Phys., 2003, 93: 8621
[2] Na S M, Flatau A B.Single grain growth and large magnetostriction in secondarily recrystallized Fe-Ga thin sheet with sharp Goss (011)
[100] orientation[J]. Scr. Mater., 2012, 66: 307
[3] Na S M, Flatau A B.Surface-energy-induced selective growth of (001) grains in magnetostrictive ternary Fe-Ga-based alloys[J]. Smart Mater. Struct., 2012, 21: 055024
[4] Yuan C, Li J H, Zhang W L, et al.Sharp Goss orientation and large magnetostriction in the rolled columnar-grained Fe-Ga alloys[J]. J. Magn. Magn. Mater., 2015, 374: 459
[5] Na S M, Flatau A B.Global Goss grain growth and grain boundary characteristics in magnetostrictive Galfenol sheets[J]. Smart Mater. Struct., 2013, 22: 125026
[6] Kellogg R A, Flatau A B, Clark A E, et al.Texture and grain morphology dependencies of saturation magnetostriction in rolled polycrystalline Fe83Ga17[J]. J. Appl. Phys., 2003, 93: 8495
[7] Summers E M, Meloy R, Na S M. Magnetostriction and texture relationships in annealed Galfenol alloys [J]. J. Appl. Phys., 2009, 105: 07A922
[8] Li J H, Yuan C, Zhang W L, et al.Retaining the <001> orientation from initial columnar grains and magnetostriction in binary Fe-Ga alloy sheets[J]. Mater. Trans., 2015, 56: 1940
[9] Park J T, Szpunar J A.Evolution of recrystallization texture in nonoriented electrical steels[J]. Acta Mater., 2003, 51: 3037
[10] Srisukhumbowornchai N, Guruswamy S.Crystallographic textures in rolled and annealed Fe-Ga and Fe-Al alloys[J]. Metall. Mater. Trans., 2004, 35A: 2963
[11] Na S M, Flatau A B.Texture evolution and probability distribution of Goss orientation in magnetostrictive Fe-Ga alloy sheets[J]. J. Mater. Sci., 2014, 49: 7697
[12] Yuan C, Li J H, Bao X Q, et al.Influence of annealing process on texture evolution and magnetostriction in rolled Fe-Ga based alloys[J]. J. Magn. Magn. Mater., 2014, 362: 154
[13] Na S M, Yoo J H, Flatau A B.Abnormal (110) grain growth and magnetostriction in recrystallized Galfenol with dispersed niobium carbide[J]. IEEE Trans. Magn., 2009, 45: 4132
[14] Rios P R.Abnormal grain growth in pure materials[J]. Acta Metall. Mater., 1992, 40: 2765
[15] Hayakawa Y, Omura T, Imamura T.Onset of secondary recrystallization in high purity 3.3% Si steel[J]. ISIJ Int., 2014, 54: 2385
[16] Sha Y H, Sun C, Zhang F, et al.Strong cube recrystallization texture in silicon steel by twin-roll casting process[J]. Acta Mater., 2014, 76: 106
[17] Park J T, Szpunar J A.Texture development during grain growth in nonoriented electrical steels[J]. ISIJ Int., 2005, 45: 743
[18] Samajdar I, Cicale S, Verlinden B, et al.Primary recrystallization in a grain oriented silicon steel: on the origin of Goss {110}<001> grains[J]. Scr. Mater., 1998, 39: 1083
[19] Paolinelli S D C, da Cunha M A, de Dafe S S F, et al. Study of the simultaneous effects of the hot band grain size and cold rolling reduction on the structure and magnetic properties of nonoriented 3% Si steel[J]. IEEE Trans. Magn., 2012, 48: 1401
[20] de Dafe S S F, Paolinelli S D C, Cota A B. Influence of thermomechanical processing on shear bands formation and magnetic properties of a 3% Si non-oriented electrical steel[J]. J. Magn. Magn. Mater., 2011, 323: 3234
[21] Lee S, de Cooman B C. Effect of warm rolling on the rolling and recrystallization textures of non-oriented 3% Si steel[J]. ISIJ Int., 2011, 51: 1545
[22] Nave M D, Barnett M R, Beladi H.The influence of solute carbon in cold-rolled steels on shear band formation and recrystallization texture[J]. ISIJ Int., 2004, 44: 1072
[23] H?lscher M, Raabe D, Lücke K.Rolling and recrystallization textures of bcc steels[J]. Steel Res. Int., 1991, 62: 567
[24] de Campos M F, Landgraf F J G, Takanohashi R, et al. Effect of the hot band grain size and intermediate annealing on the deformation and recrystallization textures in low silicon electrical steels[J]. ISIJ Int., 2004, 44: 591
[25] Park J T, Szpunar J A.Effect of initial grain size on texture evolution and magnetic properties in nonoriented electrical steels[J]. J. Magn. Magn. Mater., 2009, 321: 1928
[26] Liu J L, Sha Y H, Zhang F, et al.Development of {210}<001> recrystallization texture in Fe-6.5wt.% Si thin sheets[J]. Scr. Mater., 2011, 65: 292
[1] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[2] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[3] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[4] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[5] 宋永锋, 李雄兵, 吴海平, 司家勇, 韩晓芹. In718晶粒尺寸对超声背散射信号的影响及其无损评价方法*[J]. 金属学报, 2016, 52(3): 378-384.
[6] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
[7] 张艳,郭明星,邢辉,王斐,汪小锋,张济山,庄林忠. 不同热加工工艺对Al-Mg-Si-Cu合金板材力学性能和组织的影响*[J]. 金属学报, 2015, 51(12): 1425-1434.
[8] 赵清,夏爽,周邦新,白琴,苏诚,王宝顺,蔡志刚. 形变及热处理对825合金管材晶界特征分布的影响*[J]. 金属学报, 2015, 51(12): 1465-1471.
[9] 李雄兵, 宋永锋, 倪培君, 刘锋. 面向晶粒尺寸的超声多尺度衰减评价方法[J]. 金属学报, 2015, 51(1): 121-128.
[10] 侯丹辉, 梁松茂, 陈荣石, 董闯. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸*[J]. 金属学报, 2014, 50(5): 601-609.
[11] 武会宾, 武凤娟, 杨善武,唐荻. 微米/亚微米双峰尺度奥氏体组织形成机制*[J]. 金属学报, 2014, 50(3): 269-274.
[12] 潘太军, 贺云翔, 李杰, 张保. 二元双相Cu-Cr合金在700和800 ℃空气中的氧化行为研究*[J]. 金属学报, 2014, 50(3): 337-344.
[13] 黄晓旭. 金属强度的尺寸效应*[J]. 金属学报, 2014, 50(2): 137-140.
[14] 莫永达, 姜雁斌, 刘新华, 谢建新. 柱状晶组织HAl77-2铝黄铜的力学性能与加工硬化行为[J]. 金属学报, 2014, 50(11): 1367-1376.
[15] 都贝宁, 杨金侠, 崔传勇, 孙晓峰. 晶粒细化对K417G高温合金蠕变性能的影响[J]. 金属学报, 2014, 50(11): 1384-1392.