Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 631-640    DOI: 10.11900/0412.1961.2016.00263
  论文 本期目录 | 过刊浏览 |
变极性等离子弧焊电弧物理特性的数值模拟
陈树君,徐斌,蒋凡()
北京工业大学机电学院汽车结构部件先进制造技术教育部工程研究中心 北京100124
Numerical Simulation of Physical Characteristics of Variable Polarity Plasma Arc Welding
Shujun CHEN,Bin XU,Fan JIANG()
Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, Beijing University of Technology, Beijing 100124, China
全文: PDF(3720 KB)   HTML
摘要: 

基于磁流体动力学及Maxwell方程组,建立了变极性等离子电弧的三维瞬态计算模型,依据变极性等离子弧焊对铝合金板材穿孔焊接过程的物理特性,提出了随电弧极性变化的分时导电模型,通过计算得到了变极性等离子电弧的温度场、流场、电流密度和电弧压力的分布情况,以及电弧压力随时间的变化过程。通过实验测量了工件表面电弧中心压力,得到了不同极性时的电弧形态。结果表明:相同电流条件下,正极性时电弧温度场分布比反极性时更加分散,但正极性时电弧最高温度范围小于反极性时;反极性电弧压力和电流密度在电弧中心处均大于正极性,在径向距电弧中心一定距离处,2种极性时的电弧压力和电流密度的大小出现反转;电弧压力对焊接电流响应迅速,正极性电弧压力小于反极性电弧压力,焊接电流过零时,电弧压力会降低到较低的值,电流增加时电弧压力变化存在“过冲”现象;对实验与计算得到的变极性等离子电弧正反极性时电弧图像和工件表面电弧中心压力进行了对比,结果吻合良好。

关键词 变极性等离子电弧三维模型数值模拟    
Abstract

Variable polarity plasma arc (VPPA) is a kind of source to provide heat and force at welding process. It can remove the oxide layer with high melting point on the surface of base metal using the cleaning action of cathode spots (the special property of VPPA). So variable polarity plasma arc welding (VPPAW) is a very suitable method to join aluminum alloys which always have extremely tenacious surface oxides. It is great significant to understand clearly the physical characteristics of VPPA for predicting welding defects and making the welding process stable. Therefore, modeling and simulating VPPA are necessary and helpful to understand welding process theory and promote its application further. In this work, a three dimensional transient calculated model of VPPA was established. To describe the electrical characteristics of VPPA at different polarities, a sequential electric conducting model was proposed. With finite difference method, the temperature field, fluid flow and current density of VPPA were solved out. And the distribution of plasma arc pressure on the anode surface, as well as its evolution process as the time going on were analyzed. Arc pressure was measured experimentally to verify the calculated model. The results show that the arc temperature field of electrode negative (EN) is more compressed than that of electrode positive (EP). The range of high temperature at EN is a little larger. Arc pressure and current density of EN at central area are both higher than EP. Nonetheless, the magnitude of these values begins to reverse at a certain distance to center in radial direction. Moreover, the arc pressure rapidly responses to welding current. Pressure at EP is about 20% lower than that of EN. The pressure reduces to the lowest value when the current pass through 0. After that, while the current reaches to normal value, the pressure will immediately impact to a larger value, then quickly recover to an average value. Otherwise, to compare the experimental results with calculated results of arc images and arc pressure, they are in good agreement with each other.

Key wordsvariable polarity plasma arc    three dimensional model    numerical simulation
收稿日期: 2016-06-27      出版日期: 2017-03-10
基金资助:国家自然科学基金项目No.51505008和国家科技重大专项项目No.2014ZX04001-171

引用本文:

陈树君,徐斌,蒋凡. 变极性等离子弧焊电弧物理特性的数值模拟[J]. 金属学报, 2017, 53(5): 631-640.
Shujun CHEN,Bin XU,Fan JIANG. Numerical Simulation of Physical Characteristics of Variable Polarity Plasma Arc Welding. Acta Metall, 2017, 53(5): 631-640.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00263      或      http://www.ams.org.cn/CN/Y2017/V53/I5/631

图1  变极性等离子弧压力测试及电弧图像采集系统
图2  不同极性时变极性等离子电弧示意图
图3  求解区域及边界条件
Boundary v / (ms-1) T / K ? / V A / (Wbm-1)
ABC ?v?n=0 1000 ?=?VPPA ?A?n=0
APOTXUQLGFEDC, APNSWVRMHIJKB ?v?n=0 ?T?n=0 ???n=0 ?A?n=0
LGHM, XTONSW, UQLMRV, FGHI, DEJK - 1000 ???n=0 ?A?n=0
OPN - 3000 Eqs.(10)~(13) ?A?n=0
UXWV, EFIJ v=vconstant 1000 ???n=0 ?A?n=0
CBKD ?(ρv)?n=0 1000 ???n=0 0
表1  边界条件
图4  不同极性时变极性等离子电弧的温度场与流场分布
图5  变极性等离子电弧径向温度分布曲线
图6  变极性等离子电弧径向压力分布
图7  变极性等离子电弧轴线上等离子体流速分布
图8  不同极性时工件表面径向电流密度分布
图9  铝合金表面焊后形貌
图10  不同极性时变极性等离子电弧图像
图11  电弧中心处电弧压力随时间的演变
[1] Jenney C L, O'Brien A. Welding Handbook[M]. 2nd Ed., Miami: American Welding Society, 2001: 309
[2] Nunes A C Jr, Bayless E O Jr, Jones C S III, et al. Variable polarity plasma arc welding on the space shuttle external tank[J]. Weld. J., 1984, 63: 27
[3] Chen Q, Sun Z G, Sun J W, et al.Closed-loop control of weld penetration in keyhole plasma arc welding[J]. Trans. Nonferrous Met. Soc. China, 2004, 14: 116
[4] Dong C L, Zhu Y F, Zhang H, et al.Study on front side arc light sensing in keyhole mode plasma arc welding[J]. China Mech. Eng., 2001, 37(3): 30
[4] (董春林, 朱轶峰, 张慧等. 穿孔等离子弧焊正面弧光传感技术研究[J]. 机械工程学报, 2001, 37(3): 30)
[5] Satoru S.Sensing technology for the welding process[J]. Weld. Int., 2006, 20: 183
[6] Thornton M F.Spectroscopic determination of temperature distributions for a TIG arc[J]. J. Phys. Appl. Phys., 1993, 26D: 1432
[7] Haidar J, Farmer A J D. Temperature measurements for high-current free-burning arcs in nitrogen[J]. J. Phys. Appl. Phys., 1993, 26D: 1224
[8] Zhang Y M, Zhang S B, Liu Y C.A plasma cloud charge sensor for pulse keyhole process control[J]. Meas. Sci. Technol., 2001, 12: 1365
[9] Fanara C.Sweeping electrostatic probes in atmospheric pressure arc plasmas——Part II: Temperature determination[J]. IEEE Trans. Plasma Sci., 2005, 33: 1082
[10] Chen S J, Jiang F, Lu Z Y, et al.Measurement and analysis of the welding arc current density and pressure distribution based on split anode method [A]. Proceedings of International Conference on Mechatronics and Automation[C]. Beijing: IEEE, 2011: 1544
[11] Schwedersky M B, Gon?alves e Silva R H, Dutra J C, et al. Two-dimensional arc stagnation pressure measurements for the double-electrode GTAW process[J]. Sci. Technol. Weld. Join., 2016, 21: 275
[12] Han Y Q, Lü Y H, Chen S J, et al.Influence of variable polarity plasma arc shape on arc force[J]. Trans. China Weld. Inst., 2005, 26(5): 49
[12] (韩永全, 吕耀辉, 陈树君等. 变极性等离子电弧形态对电弧力的影响[J]. 焊接学报, 2005, 26(5): 49)
[13] Saad E, Wang H J, Kovacevic R.Classification of molten pool modes in variable polarity plasma arc welding based on acoustic signature[J]. J. Mater. Process. Technol., 2006, 174: 127
[14] Wang Y W, Zhao P S.Noncontact acoustic analysis monitoring of plasma arc welding[J]. Int. J. Pressure Vessels Piping, 2001, 78: 43
[15] Yuan X Q, Li H, Zhao T Z, et al.Study of the characteristic of D.C. arc plasma torch[J]. Acta Phys. Sin., 2004, 53: 3806
[15] (袁行球, 李辉, 赵太泽等. 直流电弧等离子体炬的特性研究[J]. 物理学报, 2004, 53: 3806)
[16] Tian J G, Deng J, Li Y J, et al.Numerical simulation for a free-burning argon arc with MHD model[J]. Chin. J. Theor. Appl. Mech., 2011, 43: 32
[16] (田君国, 邓晶, 李要建等. 自由燃烧电弧的磁流体动力学数值模拟[J]. 力学学报, 2011, 43: 32)
[17] Shi Y, Guo C B, Huang J K, et al.Numerical simulation of pulsed current tungesten inert gas (TIG) welding arc[J]. Acta Phys. Sin., 2011, 60: 048102
[17] (石玗, 郭朝博, 黄健康等. 脉冲电流作用下TIG电弧的数值分析[J]. 物理学报, 2011, 60: 048102)
[18] Hsu K C, Etemadi K, Pfender E.Study of the free-burning high-intensity argon arc[J]. J. Appl. Phys., 1983, 54: 1293
[19] Hsu K C, Pfender E.Two-temperature modeling of the free-burning, high-intensity arc[J]. J. Appl. Phys., 1983, 54: 4359
[20] Kovitya P, Lowke J J.Two-dimensional analysis of free burning arcs in argon[J] J. Phys. Appl. Phys., 2000, 18D: 53
[21] McKelliget J, Szekely J. Heat transfer and fluid flow in the welding arc[J]. Metall. Trans., 1986, 17A: 1139
[22] Wu C S, Ushio M, Tanaka M.Analysis of the TIG welding arc behavior[J]. Comput. Mater. Sci., 1997, 7: 308
[23] Kim Y J, Lee J C.Numerical analysis of free-burning argon arcs based on the local thermodynamic equilibrium model at various electrical currents[J]. Thin Solid Films, 2013, 547: 28
[24] Lago F, Gonzalez J J, Freton P, et al.A numerical modelling of an electric arc and its interaction with the anode: part III. Application to the interaction of a lightning strike and an aircraft in flight[J]. J. Phys. Appl. Phys., 2006, 39D: 2294
[25] Blais A, Proulx P, Boulos M I.Three-dimensional numerical mode-lling of a magnetically deflected dc transferred arc in argon[J]. J. Phys. Appl. Phys., 2003, 36D: 488
[26] Xu G, Hu J, Tsai H L.Three-dimensional modeling of the plasma arc in arc welding[J]. J. Appl. Phys., 2008, 104: 103301
[27] Tanaka M, Terasaki H, Ushio M, et al.A unified numerical mode-ling of stationary tungsten-inert-gas welding process[J]. Metall. Mater. Trans., 2002, 33A: 2043
[28] Tanaka M, Terasaki H, Ushio M, et al.Numerical study of a free-burning argon arc with anode melting[J]. Plasma Chem. Plasma Process., 2003, 23: 585
[29] Tanaka M, Ushio M, Lowke J J.Numerical study of gas tungsten arc plasma with anode melting[J]. Vacuum, 2004, 73: 381
[30] Wang X X, Fan D, Huang J K, et al.A unified model of coupled arc plasma and weld pool for double electrodes TIG welding[J]. J. Phys. Appl. Phys., 2014, 47D: 275202
[31] Wang X X, Fan D, Huang J K, et al.Numerical simulation of coupled arc in double electrode tungsten inert gas welding[J]. Acta Phys. Sin., 2013, 62: 228101
[31] (王新鑫, 樊丁, 黄健康等. 双钨极耦合电弧数值模拟[J]. 物理学报, 2013, 62: 228101)
[32] Wang X X, Fan D, Huang J K, et al.Numerical simulation of heat transfer and fluid flow in double electrodes TIG arc-weld pool[J]. Acta Matall. Sin., 2015, 51: 178
[32] (王新鑫, 樊丁, 黄健康等. 双钨极TIG电弧-熔池传热与流动数值模拟[J]. 金属学报, 2015, 51: 178)
[33] Fan D, Huang Z C, Huang J K, et al.Three-dimensional numerical analysis of interaction between arc and pool by considering the behavior of the metal vapor in tungsten inert gas welding[J]. Acta Phys. Sin., 2015, 64: 108102
[33] (樊丁, 黄自成, 黄健康等. 考虑金属蒸汽的钨极惰性气体保护焊电弧与熔池交互作用三维数值分析[J]. 物理学报, 2015, 64: 108102)
[34] Lowke J J, Tanaka M.'LTE-diffusion approximation' for arc calculations[J]. J. Phys. Appl. Phys., 2006, 39D: 3634
[35] Tashiro S, Miyata M, Tanaka M.Numerical analysis of AC tungsten inert gas welding of aluminum plate in consideration of oxide layer cleaning[J]. Thin Solid Films, 2011, 519: 7025
[36] McKellige J, Szekely J, Vardelle M, et al. Temperature and velocity fields in a gas stream exiting a plasma torch. A mathematical model and its experimental verification[J]. Plasma Chem. Plasma Process., 1982, 2: 317
[37] Westhoff R, Szekely J.A model of fluid, heat flow, and electromagnetic phenomena in a nontransferred arc plasma torch[J]. J. Appl. Phys., 1991, 70: 3455
[38] Bauchire J M, Gonzalez J J, Gleizes A.Modeling of a DC plasma torch in laminar and turbulent flow[J]. Plasma Chem. Plasma Proc., 1997, 17: 409
[39] Yin F L, Hu S S, Yu C L, et al.Computational simulation for the constricted flow of argon plasma arc[J]. Comput. Mater. Sci., 2007, 40: 389
[40] Zhou Q H, Li H, Xu X, et al.Comparative study of turbulence models on highly constricted plasma cutting arc[J]. J. Phys. Appl. Phys., 2009, 42D: 015210
[41] Zhou Q H, Li H, Liu F, et al.Effects of nozzle length and process parameters on highly constricted oxygen plasma cutting arc[J]. Plasma Chem. Plasma Process., 2008, 28: 729
[42] Zhou Q H, Yin H T, Li H, et al.The effect of plasma-gas swirl flow on a highly constricted plasma cutting arc[J]. J. Phys. Appl. Phys., 2009, 42D: 095208
[43] Zhou Q H, Guo W K, Li H.Numerical simulation on the effect of shielding gas on the plasma cutting arc[J]. Acta Phys. Sin., 2011, 60: 025214
[43] (周前红, 郭文康, 李辉. 保护气对切割弧特性影响的模拟研究[J]. 物理学报, 2011, 60: 025214)
[44] Jian X X, Wu C S.Numerical analysis of the coupled arc-weld pool-keyhole behaviors in stationary plasma arc welding[J] Int. J. Heat Mass Transf., 2015, 84: 839
[45] Jian X X, Wu C S, Zhang G K, et al.A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding[J]. J. Phys. Appl. Phys., 2015, 48D: 465504
[1] 邵珩, 李岩, 南海, 许庆彦. Ti-6Al-4V合金熔模铸造过程中的固态相变微观组织演变的数值模拟[J]. 金属学报, 2017, 53(9): 1140-1152.
[2] 王学,胡磊,陈东旭,孙松涛,李立全. 马氏体相变对9%Cr热强钢管道多道焊接头残余应力演化的影响[J]. 金属学报, 2017, 53(7): 888-896.
[3] 曾贵民,罗海文,李军,龚坚,黎先浩,王现辉. 取向硅钢低温加热工艺中渗氮工序的实验与数值模拟研究[J]. 金属学报, 2017, 53(6): 743-750.
[4] 李青,王资兴,谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究[J]. 金属学报, 2017, 53(4): 494-504.
[5] 张清东,林潇,曹强,卢兴福,张勃洋,胡树山. 冷轧高强钢板淬火过程板形瓢曲缺陷演变规律研究[J]. 金属学报, 2017, 53(4): 385-396.
[6] 邓德安, 任森栋, 李索, 张彦斌. 多重热循环和约束条件对P92钢焊接残余应力的影响[J]. 金属学报, 2017, 53(11): 1532-1540.
[7] 曹流, 孙飞, 陈涛, 滕子浩, 唐玉龙, 廖敦明. 铸造充型过程中液固转变影响流动行为的数值计算[J]. 金属学报, 2017, 53(11): 1521-1531.
[8] 李军,葛鸿浩,GE Honghao,WU Menghuai,李建国. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型*[J]. 金属学报, 2016, 52(9): 1096-1104.
[9] 徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
[10] 邓德安,张彦斌,李索,童彦刚. 固态相变对P92钢焊接接头残余应力的影响*[J]. 金属学报, 2016, 52(4): 394-402.
[11] 朱鸣芳, 汤倩玉, 张庆宇, 潘诗琰, 孙东科. 合金凝固过程中显微组织演化的元胞自动机模拟*[J]. 金属学报, 2016, 52(10): 1297-1310.
[12] 滕跃飞,李应举,冯小辉,杨院生. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响*[J]. 金属学报, 2015, 51(7): 844-852.
[13] 胥国祥, 张卫卫, 刘朋, 杜宝帅. 激光+GMAW复合热源焊熔池流体流动的数值分析*[J]. 金属学报, 2015, 51(6): 713-723.
[14] 唐宁, 王艳丽, 许庆彦, 赵希宏, 柳百成. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51(4): 499-512.
[15] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极TIG电弧-熔池传热与流动数值模拟*[J]. 金属学报, 2015, 51(2): 178-190.