Please wait a minute...
金属学报  2017, Vol. 53 Issue (5): 631-640    DOI: 10.11900/0412.1961.2016.00263
  论文 本期目录 | 过刊浏览 |
变极性等离子弧焊电弧物理特性的数值模拟
陈树君,徐斌,蒋凡()
北京工业大学机电学院汽车结构部件先进制造技术教育部工程研究中心 北京100124
Numerical Simulation of Physical Characteristics of Variable Polarity Plasma Arc Welding
Shujun CHEN,Bin XU,Fan JIANG()
Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, Beijing University of Technology, Beijing 100124, China
全文: PDF(3720 KB)   HTML
摘要: 

基于磁流体动力学及Maxwell方程组,建立了变极性等离子电弧的三维瞬态计算模型,依据变极性等离子弧焊对铝合金板材穿孔焊接过程的物理特性,提出了随电弧极性变化的分时导电模型,通过计算得到了变极性等离子电弧的温度场、流场、电流密度和电弧压力的分布情况,以及电弧压力随时间的变化过程。通过实验测量了工件表面电弧中心压力,得到了不同极性时的电弧形态。结果表明:相同电流条件下,正极性时电弧温度场分布比反极性时更加分散,但正极性时电弧最高温度范围小于反极性时;反极性电弧压力和电流密度在电弧中心处均大于正极性,在径向距电弧中心一定距离处,2种极性时的电弧压力和电流密度的大小出现反转;电弧压力对焊接电流响应迅速,正极性电弧压力小于反极性电弧压力,焊接电流过零时,电弧压力会降低到较低的值,电流增加时电弧压力变化存在“过冲”现象;对实验与计算得到的变极性等离子电弧正反极性时电弧图像和工件表面电弧中心压力进行了对比,结果吻合良好。

关键词 变极性等离子电弧三维模型数值模拟    
Abstract

Variable polarity plasma arc (VPPA) is a kind of source to provide heat and force at welding process. It can remove the oxide layer with high melting point on the surface of base metal using the cleaning action of cathode spots (the special property of VPPA). So variable polarity plasma arc welding (VPPAW) is a very suitable method to join aluminum alloys which always have extremely tenacious surface oxides. It is great significant to understand clearly the physical characteristics of VPPA for predicting welding defects and making the welding process stable. Therefore, modeling and simulating VPPA are necessary and helpful to understand welding process theory and promote its application further. In this work, a three dimensional transient calculated model of VPPA was established. To describe the electrical characteristics of VPPA at different polarities, a sequential electric conducting model was proposed. With finite difference method, the temperature field, fluid flow and current density of VPPA were solved out. And the distribution of plasma arc pressure on the anode surface, as well as its evolution process as the time going on were analyzed. Arc pressure was measured experimentally to verify the calculated model. The results show that the arc temperature field of electrode negative (EN) is more compressed than that of electrode positive (EP). The range of high temperature at EN is a little larger. Arc pressure and current density of EN at central area are both higher than EP. Nonetheless, the magnitude of these values begins to reverse at a certain distance to center in radial direction. Moreover, the arc pressure rapidly responses to welding current. Pressure at EP is about 20% lower than that of EN. The pressure reduces to the lowest value when the current pass through 0. After that, while the current reaches to normal value, the pressure will immediately impact to a larger value, then quickly recover to an average value. Otherwise, to compare the experimental results with calculated results of arc images and arc pressure, they are in good agreement with each other.

Key wordsvariable polarity plasma arc    three dimensional model    numerical simulation
收稿日期: 2016-06-27      出版日期: 2017-03-10
基金资助:国家自然科学基金项目No.51505008和国家科技重大专项项目No.2014ZX04001-171

引用本文:

陈树君,徐斌,蒋凡. 变极性等离子弧焊电弧物理特性的数值模拟[J]. 金属学报, 2017, 53(5): 631-640.
Shujun CHEN,Bin XU,Fan JIANG. Numerical Simulation of Physical Characteristics of Variable Polarity Plasma Arc Welding. Acta Metall Sin, 2017, 53(5): 631-640.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00263      或      http://www.ams.org.cn/CN/Y2017/V53/I5/631

图1  变极性等离子弧压力测试及电弧图像采集系统
图2  不同极性时变极性等离子电弧示意图
图3  求解区域及边界条件
Boundary v / (ms-1) T / K ? / V A / (Wbm-1)
ABC ?v?n=0 1000 ?=?VPPA ?A?n=0
APOTXUQLGFEDC, APNSWVRMHIJKB ?v?n=0 ?T?n=0 ???n=0 ?A?n=0
LGHM, XTONSW, UQLMRV, FGHI, DEJK - 1000 ???n=0 ?A?n=0
OPN - 3000 Eqs.(10)~(13) ?A?n=0
UXWV, EFIJ v=vconstant 1000 ???n=0 ?A?n=0
CBKD ?(ρv)?n=0 1000 ???n=0 0
表1  边界条件
图4  不同极性时变极性等离子电弧的温度场与流场分布
图5  变极性等离子电弧径向温度分布曲线
图6  变极性等离子电弧径向压力分布
图7  变极性等离子电弧轴线上等离子体流速分布
图8  不同极性时工件表面径向电流密度分布
图9  铝合金表面焊后形貌
图10  不同极性时变极性等离子电弧图像
图11  电弧中心处电弧压力随时间的演变
[1] Jenney C L, O'Brien A. Welding Handbook[M]. 2nd Ed., Miami: American Welding Society, 2001: 309
[2] Nunes A C Jr, Bayless E O Jr, Jones C S III, et al. Variable polarity plasma arc welding on the space shuttle external tank[J]. Weld. J., 1984, 63: 27
[3] Chen Q, Sun Z G, Sun J W, et al.Closed-loop control of weld penetration in keyhole plasma arc welding[J]. Trans. Nonferrous Met. Soc. China, 2004, 14: 116
[4] Dong C L, Zhu Y F, Zhang H, et al.Study on front side arc light sensing in keyhole mode plasma arc welding[J]. China Mech. Eng., 2001, 37(3): 30
[4] (董春林, 朱轶峰, 张慧等. 穿孔等离子弧焊正面弧光传感技术研究[J]. 机械工程学报, 2001, 37(3): 30)
[5] Satoru S.Sensing technology for the welding process[J]. Weld. Int., 2006, 20: 183
[6] Thornton M F.Spectroscopic determination of temperature distributions for a TIG arc[J]. J. Phys. Appl. Phys., 1993, 26D: 1432
[7] Haidar J, Farmer A J D. Temperature measurements for high-current free-burning arcs in nitrogen[J]. J. Phys. Appl. Phys., 1993, 26D: 1224
[8] Zhang Y M, Zhang S B, Liu Y C.A plasma cloud charge sensor for pulse keyhole process control[J]. Meas. Sci. Technol., 2001, 12: 1365
[9] Fanara C.Sweeping electrostatic probes in atmospheric pressure arc plasmas——Part II: Temperature determination[J]. IEEE Trans. Plasma Sci., 2005, 33: 1082
[10] Chen S J, Jiang F, Lu Z Y, et al.Measurement and analysis of the welding arc current density and pressure distribution based on split anode method [A]. Proceedings of International Conference on Mechatronics and Automation[C]. Beijing: IEEE, 2011: 1544
[11] Schwedersky M B, Gon?alves e Silva R H, Dutra J C, et al. Two-dimensional arc stagnation pressure measurements for the double-electrode GTAW process[J]. Sci. Technol. Weld. Join., 2016, 21: 275
[12] Han Y Q, Lü Y H, Chen S J, et al.Influence of variable polarity plasma arc shape on arc force[J]. Trans. China Weld. Inst., 2005, 26(5): 49
[12] (韩永全, 吕耀辉, 陈树君等. 变极性等离子电弧形态对电弧力的影响[J]. 焊接学报, 2005, 26(5): 49)
[13] Saad E, Wang H J, Kovacevic R.Classification of molten pool modes in variable polarity plasma arc welding based on acoustic signature[J]. J. Mater. Process. Technol., 2006, 174: 127
[14] Wang Y W, Zhao P S.Noncontact acoustic analysis monitoring of plasma arc welding[J]. Int. J. Pressure Vessels Piping, 2001, 78: 43
[15] Yuan X Q, Li H, Zhao T Z, et al.Study of the characteristic of D.C. arc plasma torch[J]. Acta Phys. Sin., 2004, 53: 3806
[15] (袁行球, 李辉, 赵太泽等. 直流电弧等离子体炬的特性研究[J]. 物理学报, 2004, 53: 3806)
[16] Tian J G, Deng J, Li Y J, et al.Numerical simulation for a free-burning argon arc with MHD model[J]. Chin. J. Theor. Appl. Mech., 2011, 43: 32
[16] (田君国, 邓晶, 李要建等. 自由燃烧电弧的磁流体动力学数值模拟[J]. 力学学报, 2011, 43: 32)
[17] Shi Y, Guo C B, Huang J K, et al.Numerical simulation of pulsed current tungesten inert gas (TIG) welding arc[J]. Acta Phys. Sin., 2011, 60: 048102
[17] (石玗, 郭朝博, 黄健康等. 脉冲电流作用下TIG电弧的数值分析[J]. 物理学报, 2011, 60: 048102)
[18] Hsu K C, Etemadi K, Pfender E.Study of the free-burning high-intensity argon arc[J]. J. Appl. Phys., 1983, 54: 1293
[19] Hsu K C, Pfender E.Two-temperature modeling of the free-burning, high-intensity arc[J]. J. Appl. Phys., 1983, 54: 4359
[20] Kovitya P, Lowke J J.Two-dimensional analysis of free burning arcs in argon[J] J. Phys. Appl. Phys., 2000, 18D: 53
[21] McKelliget J, Szekely J. Heat transfer and fluid flow in the welding arc[J]. Metall. Trans., 1986, 17A: 1139
[22] Wu C S, Ushio M, Tanaka M.Analysis of the TIG welding arc behavior[J]. Comput. Mater. Sci., 1997, 7: 308
[23] Kim Y J, Lee J C.Numerical analysis of free-burning argon arcs based on the local thermodynamic equilibrium model at various electrical currents[J]. Thin Solid Films, 2013, 547: 28
[24] Lago F, Gonzalez J J, Freton P, et al.A numerical modelling of an electric arc and its interaction with the anode: part III. Application to the interaction of a lightning strike and an aircraft in flight[J]. J. Phys. Appl. Phys., 2006, 39D: 2294
[25] Blais A, Proulx P, Boulos M I.Three-dimensional numerical mode-lling of a magnetically deflected dc transferred arc in argon[J]. J. Phys. Appl. Phys., 2003, 36D: 488
[26] Xu G, Hu J, Tsai H L.Three-dimensional modeling of the plasma arc in arc welding[J]. J. Appl. Phys., 2008, 104: 103301
[27] Tanaka M, Terasaki H, Ushio M, et al.A unified numerical mode-ling of stationary tungsten-inert-gas welding process[J]. Metall. Mater. Trans., 2002, 33A: 2043
[28] Tanaka M, Terasaki H, Ushio M, et al.Numerical study of a free-burning argon arc with anode melting[J]. Plasma Chem. Plasma Process., 2003, 23: 585
[29] Tanaka M, Ushio M, Lowke J J.Numerical study of gas tungsten arc plasma with anode melting[J]. Vacuum, 2004, 73: 381
[30] Wang X X, Fan D, Huang J K, et al.A unified model of coupled arc plasma and weld pool for double electrodes TIG welding[J]. J. Phys. Appl. Phys., 2014, 47D: 275202
[31] Wang X X, Fan D, Huang J K, et al.Numerical simulation of coupled arc in double electrode tungsten inert gas welding[J]. Acta Phys. Sin., 2013, 62: 228101
[31] (王新鑫, 樊丁, 黄健康等. 双钨极耦合电弧数值模拟[J]. 物理学报, 2013, 62: 228101)
[32] Wang X X, Fan D, Huang J K, et al.Numerical simulation of heat transfer and fluid flow in double electrodes TIG arc-weld pool[J]. Acta Matall. Sin., 2015, 51: 178
[32] (王新鑫, 樊丁, 黄健康等. 双钨极TIG电弧-熔池传热与流动数值模拟[J]. 金属学报, 2015, 51: 178)
[33] Fan D, Huang Z C, Huang J K, et al.Three-dimensional numerical analysis of interaction between arc and pool by considering the behavior of the metal vapor in tungsten inert gas welding[J]. Acta Phys. Sin., 2015, 64: 108102
[33] (樊丁, 黄自成, 黄健康等. 考虑金属蒸汽的钨极惰性气体保护焊电弧与熔池交互作用三维数值分析[J]. 物理学报, 2015, 64: 108102)
[34] Lowke J J, Tanaka M.'LTE-diffusion approximation' for arc calculations[J]. J. Phys. Appl. Phys., 2006, 39D: 3634
[35] Tashiro S, Miyata M, Tanaka M.Numerical analysis of AC tungsten inert gas welding of aluminum plate in consideration of oxide layer cleaning[J]. Thin Solid Films, 2011, 519: 7025
[36] McKellige J, Szekely J, Vardelle M, et al. Temperature and velocity fields in a gas stream exiting a plasma torch. A mathematical model and its experimental verification[J]. Plasma Chem. Plasma Process., 1982, 2: 317
[37] Westhoff R, Szekely J.A model of fluid, heat flow, and electromagnetic phenomena in a nontransferred arc plasma torch[J]. J. Appl. Phys., 1991, 70: 3455
[38] Bauchire J M, Gonzalez J J, Gleizes A.Modeling of a DC plasma torch in laminar and turbulent flow[J]. Plasma Chem. Plasma Proc., 1997, 17: 409
[39] Yin F L, Hu S S, Yu C L, et al.Computational simulation for the constricted flow of argon plasma arc[J]. Comput. Mater. Sci., 2007, 40: 389
[40] Zhou Q H, Li H, Xu X, et al.Comparative study of turbulence models on highly constricted plasma cutting arc[J]. J. Phys. Appl. Phys., 2009, 42D: 015210
[41] Zhou Q H, Li H, Liu F, et al.Effects of nozzle length and process parameters on highly constricted oxygen plasma cutting arc[J]. Plasma Chem. Plasma Process., 2008, 28: 729
[42] Zhou Q H, Yin H T, Li H, et al.The effect of plasma-gas swirl flow on a highly constricted plasma cutting arc[J]. J. Phys. Appl. Phys., 2009, 42D: 095208
[43] Zhou Q H, Guo W K, Li H.Numerical simulation on the effect of shielding gas on the plasma cutting arc[J]. Acta Phys. Sin., 2011, 60: 025214
[43] (周前红, 郭文康, 李辉. 保护气对切割弧特性影响的模拟研究[J]. 物理学报, 2011, 60: 025214)
[44] Jian X X, Wu C S.Numerical analysis of the coupled arc-weld pool-keyhole behaviors in stationary plasma arc welding[J] Int. J. Heat Mass Transf., 2015, 84: 839
[45] Jian X X, Wu C S, Zhang G K, et al.A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding[J]. J. Phys. Appl. Phys., 2015, 48D: 465504
[1] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[2] 李军, 夏明许, 胡侨丹, 李建国. 大型铸锭均质化问题及其新解[J]. 金属学报, 2018, 54(5): 773-788.
[3] 刘政, 陈志平, 陈涛. 坩埚尺寸和电磁频率对半固态A356铝合金浆料流动的影响[J]. 金属学报, 2018, 54(3): 435-442.
[4] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[5] 廖敦明, 曹流, 孙飞, 陈涛. 铸造宏观过程数值模拟技术的研究现状与展望[J]. 金属学报, 2018, 54(2): 161-173.
[6] 武传松, 宿浩, 石磊. 搅拌摩擦焊接产热传热过程与材料流动的数值模拟[J]. 金属学报, 2018, 54(2): 265-277.
[7] 王锦程, 郭灿, 张琪, 唐赛, 李俊杰, 王志军. 原子尺度下凝固形核计算模拟研究的进展[J]. 金属学报, 2018, 54(2): 204-216.
[8] 朱苗勇, 娄文涛, 王卫领. 炼钢与连铸过程数值模拟研究进展[J]. 金属学报, 2018, 54(2): 131-150.
[9] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[10] 沈厚发, 陈康欣, 柳百成. 钢锭铸造过程宏观偏析数值模拟[J]. 金属学报, 2018, 54(2): 151-160.
[11] 王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.
[12] 吴士平, 王汝佳, 陈伟, 戴贵鑫. 振动过程的数值模拟在金属凝固中应用的研究进展[J]. 金属学报, 2018, 54(2): 247-264.
[13] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[14] 魏雷, 曹永青, 杨海欧, 林鑫, 王猛, 黄卫东. 粉末床激光重熔条件下Ni-Sn反常共晶微观组织的数值模拟[J]. 金属学报, 2018, 54(12): 1801-1808.
[15] 胡磊, 王学, 尹孝辉, 刘洪, 马群双. 层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响[J]. 金属学报, 2018, 54(12): 1767-1776.