Please wait a minute...
金属学报  2017, Vol. 53 Issue (3): 376-384    DOI: 10.11900/0412.1961.2016.00216
  本期目录 | 过刊浏览 |
形貌可控NaNbO3的生长机理和光催化性能
张婷婷1,祁阳1(),刘刚2,刘鸣华2
1 东北大学材料科学与工程学院材料物理与化学研究所 沈阳 1108192 国家纳米科学中心 北京 100190
Growth Mechanism and Photocatalytic Activity of NaNbO3 with Controllable Morphology
Tingting ZHANG1,Yang QI1(),Gang LIU2,Minghua LIU2
1 Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 National Center for Nanoscience and Technology, Beijing 100190, China
引用本文:

张婷婷,祁阳,刘刚,刘鸣华. 形貌可控NaNbO3的生长机理和光催化性能[J]. 金属学报, 2017, 53(3): 376-384.
Tingting ZHANG, Yang QI, Gang LIU, Minghua LIU. Growth Mechanism and Photocatalytic Activity of NaNbO3 with Controllable Morphology[J]. Acta Metall Sin, 2017, 53(3): 376-384.

全文: PDF(5739 KB)   HTML
摘要: 

采用简易的水热合成法,制备出了NaNbO3粉体。通过XRD、Raman、SEM、BET比表面积分析仪和DRUV-Vis分析手段对合成样品进行了系统的表征。XRD和Raman结果表明,所制备的样品为纯正交相NaNbO3,且不同形貌的NaNbO3具有各异的主要暴露晶面。基于SEM像的形貌尺寸统计分析结果表明,NaNbO3的微观形貌随着反应时间的延长,经历了由纳米线到纳米线与微米块混合阶段,最后到更大尺寸的微米块的过程,实现了NaNbO3的形貌可控合成。结合前人研究结果提出了其生长机理,强调了P123的重要作用。DRUV-Vis结果表明,NaNbO3纳米线的吸收边缘因量子尺寸效应而发生蓝移。以亚甲基蓝水溶液为研究对象,深入研究了所制备的NaNbO3样品在紫外光下的光催化降解效率,并与商业化的NaNbO3进行了对比。结果表明,NaNbO3的光催化性能具有形貌依赖性,BET比表面积归一化的降解速率大小为:NaNbO3纳米线 > NaNbO3微米块 > 商业化NaNbO3,归因于不同形貌的NaNbO3具有各异的暴露晶面。

关键词 NaNbO3光催化亚甲基蓝钙钛矿P123    
Abstract

Semiconductor photocatalysis for harvasting and utilizaing solar energy to solve worldwide environmental pollution and energy shortage is attracted flourishing interest. A complete understanding of structure-function relationships in well-defined model catalysts is essential to better understanding “real world” photocatalysis as well as rationally design photocatalysts. Well-defined NaNbO3 crystals are successful synthesized via facile hydrothermal method. Systematically characterzation is performed by XRD, Raman, SEM, BET specific surface area analyzer and DRUV-Vis. The results of XRD and Raman show that the as-prepared samples are pure orthorhombic NaNbO3 and NaNbO3 with different morphology possess various mainly exposed facets. On the basis of statistical SEM measurements, it presents that the shape evolution of NaNbO3 is shown to be dependent on the reaction time, from nanowires to a mixture of nanowires and microcubes, and finally to microcubes, and realized the morphology control systhesis of NaNbO3. The possible growth mechanism is proposed combined with previous study, highlighting the crucial role of P123. The photocatalytic performance of the as-prepared NaNbO3 crystals is assessed towards aqueous methyl bule under UV illumination, and compared with that of commercial NaNbO3 powders. DRUV-Vis evidenced that the absorption edge of NaNbO3 nanowires is blue shifted due to quantum size effect. The results show that the photoreactivity is morphology-dependent, with the BET specific surface area normalized reaction rate constants follow the order NaNbO3 nanowires> NaNbO3 microcubes > commercial NaNbO3. The exposed facets play a crucial role in determining the observed photocatalytic activity.

Key wordsNaNbO3    photocatalysis    methyl blue    perovskite    P123
收稿日期: 2016-06-03     
基金资助:国家自然科学基金项目Nos.51272048和51172040以及中央高校基本科研业务费专项资金项目No.N140108001
图1  200 ℃、不同合成时间下制备的NaNbO3粉体形貌
图2  200 ℃、不同合成时间下制备的NaNbO3的尺寸分布
图3  在200 ℃制备的NaNbO3纳米线、微米块和商业化NaNbO3的XRD谱和Raman谱
图4  单个典型NaNbO3纳米线和微米块的TEM像、HRTEM像和SAED谱
图5  典型的单个NaNbO3线的环形明场像
图6  NaNbO3的生长机理示意图
图7  在200 ℃制备的NaNbO3纳米线、微米块和商业化NaNbO3样品的紫外-可见光漫反射谱
图8  NaNbO3在波长为250~380 nm的紫外光下催化降解MB时,MB的浓度随辐照时间的变化
图9  NaNbO3纳米线在紫外光下催化降解MB的循环实验
[1] Chen C C, Ma W H, Zhao J C.Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chem. Soc. Rev., 2010, 39: 4206
[2] Ma Y, Wang X L, Jia Y S, et al.Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chem. Rev., 2014, 114: 9987
[3] Shaham-Waldmann N, Paz Y.Away from TiO2: A critical minireview on the developing of new photocatalysts for degradation of contaminants in water[J]. Mater. Sci. Semicond. Process., 2016, 42: 72
[4] Jung J H, Lee M, Hong J I, et al.Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator[J]. ACS Nano, 2011, 5: 10041
[5] Zeng W, Tao X-M, Chen S, et al.Highly durable all-fiber nanogenerator for mechanical energy harvesting[J]. Energy Environ. Sci., 2013, 6: 2631
[6] Dutto F, Raillon C, Schenk K, et al.Nonlinear optical response in single alkaline niobate nanowires[J]. Nano Lett., 2011, 11: 2517
[7] Yan C L, Nikolova L, Dadvand A, et al.Multiple NaNbO3/Nb2O5 heterostructure nanotubes: A new class of ferroelectric/semiconductor nanomaterials[J]. Adv. Mater., 2010, 22: 1741
[8] Grabowska E.Selected perovskite oxides: Characterization, preparation and photocatalytic properties——A review[J]. Appl. Catal., 2016, 186B: 97
[9] Shi H F, Wang T Z, Chen J, et al.Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts[J]. Catal. Lett., 2011, 141: 525
[10] Li G Q, Yi Z G, Bai Y, et al.Anisotropy in photocatalytic oxidization activity of NaNbO3 photocatalyst[J]. Dalton Trans., 2012, 41: 10194
[11] Li P, Ouyang S X, Xi G C, et al.The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3[J]. J. Phys. Chem., 2012, 116C: 7621
[12] Shi H F, Lan B Y, Zhang C L, et al.Nitrogen doping concentration influence on NaNbO3 from first-principle calculations[J]. J. Phys. Chem. Solids, 2014, 75: 74
[13] Li G Q.Photocatalytic properties of NaNbO3 and Na0.6Ag0.4NbO3 synthesized by polymerized complex method[J]. Mater. Chem. Phys., 2010, 121: 42
[14] Zielińska B, Borowiak-Palen E, Kalenczuk R J.Preparation, characterization and photocatalytic activity of metal-loaded NaNbO3[J]. J. Phys. Chem. Solids, 2011, 72: 117
[15] Lv J, Kako T, Li Z S, et al.Synthesis and photocatalytic activities of NaNbO3 rods modified by In2O3 nanoparticles[J]. J. Phys. Chem., 2010, 114C: 6157
[16] Jiang L Q, Qiu Y, Yi Z G.Potassium niobate nanostructures: Controllable morphology, growth mechanism, and photocatalytic activity[J]. J. Mater. Chem., 2013, 1A: 2878
[17] Zhou X M, Lan J Y, Liu G, et al.Facet-mediated photodegradation of organic dye over hematite architectures by visible light[J]. Angew. Chem., Int. Ed., 2012, 51: 178
[18] Lei W Y, Zhang T T, Gu L, et al.Surface-structure sensitivity of CeO2 nanocrystals in photocatalysis and enhancing the reactivity with nanogold[J]. ACS Catal., 2015, 5: 4385
[19] Shi H F, Li X K, Wang D F, et al.NaNbO3 nanostructures: Facile synthesis, characterization, and their photocatalytic properties[J]. Catal. Lett., 2009, 132: 205
[20] Xiao Q, Jaatinen E, Zhu H Y.Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light[J]. Chem. Asian J., 2014, 9: 3046
[21] Shiratori Y, Magrez A, Dornseiffer J, et al.Polymorphism in micro-, submicro-, and nanocrystalline NaNbO3[J]. J. Phys. Chem., 2005, 109B: 20122
[22] Rodriguez J A, Ramírez P J, Asara G G, et al.Charge polarization at a Au-TiC interface and the generation of highly active and selective catalysts for the low-temperature water-gas shift reaction[J]. Angew. Chem., Int. Ed., 2014, 53: 11270
[23] Zhu H Y, Zheng Z F, Gao X P, et al.Structural evolution in a hydrothermal reaction between Nb2O5 and NaOH solution: From Nb2O5 grains to microporous Na2Nb2O62/3H2O fibers and NaNbO3 cubes[J]. J. Am. Chem. Soc., 2006, 128: 2373
[24] Xu H W, Nyman M, Nenoff T M, et al.Prototype sandia octahedral molecular sieve (SOMS) Na2Nb2O6·H2O: Synthesis, structure and thermodynamic stability[J]. Chem. Mater., 2004, 16: 2034
[25] Shi H F, Chen G Q, Zhang C L, et al.Polymeric g-C3N4 coupled with NaNbO3 nanowires toward enhanced photocatalytic reduction of CO2 into renewable fuel[J]. ACS Catal., 2014, 4: 3637
[26] Bannat I, Wessels K, Oekermann T, et al.Improving the photocatalytic performance of mesoporous titania films by modification with gold nanostructures[J]. Chem. Mater., 2009, 21: 1645
[27] Turchi C S, Ollis D F.Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack[J]. J. Catal., 1990, 122: 178
[28] Qu Y Q, Duan X F.Progress, challenge and perspective of heterogeneous photocatalysts[J]. Chem. Soc. Rev., 2013, 42: 2568
[1] 张霞, 宋扬, 王誉, 纪逯鹤, 杨媚, 孟皓. 超声共混合成Ni(HNCN)2/BiVO4复合可见光催化剂[J]. 金属学报, 2020, 56(11): 1551-1557.
[2] 荣凤鸣, 王誉, 张霞. 基于氰胺锌的复合光催化剂的结构与可见光催化性能[J]. 金属学报, 2018, 54(1): 76-82.
[3] 祁洪飞, 刘大博, 滕乐金, 王天民, 罗飞, 田野. Au反点阵列孔径对Au/TiO2复合薄膜光催化性能的影响[J]. 金属学报, 2014, 50(10): 1163-1169.
[4] 王晓红,谢文静,郝臣,张鹏飞,傅小奇,司乃潮. 木素磺酸钙模板法液相合成花簇状ZnO及其光催化性能[J]. 金属学报, 2013, 49(9): 1098-1104.
[5] 宋晓艳 孙中华. 负热膨胀反钙钛矿锰氮化合物的研究综述[J]. 金属学报, 2011, 47(11): 1362-1371.
[6] 张从阳 朱洁 张茂才. Mn3(Cu1-xGex)N的负热膨胀现象[J]. 金属学报, 2009, 45(1): 97-101.
[7] 邵忠财; 李晓丹; 苏会东; 魏守强; 翟玉春 . 微弧氧化+电解液修饰法制备TiO2薄膜的光催化性能[J]. 金属学报, 2008, 44(10): 1238-1242 .
[8] 马永青; 宋文海; 戴建明; 张瑞丽; 杨杰; 杜家驹; 孙玉平 . 钙钛矿结构锰氧化物La0.67Ca0.33MnO3的内耗研究[J]. 金属学报, 2003, 39(11): 1173-1175 .
[9] 马永青; 宋文海; 戴建明; 张瑞丽; 杨杰; 杜家驹; 孙玉平 . 钙钛矿结构锰氧化物La0.67Ca0.33MnO3的内耗研究[J]. 金属学报, 2003, 39(11): 1173-.
[10] 娄太平; 李玉海 . 含Ti高炉渣的氧化与钙钛矿结晶研究[J]. 金属学报, 2000, 36(2): 141-144 .
[11] 娄太平; 李玉海; 马俊伟; 夏玉虎; 隋智通 . 等温过程含Ti炉渣中钙钛矿相弥散颗粒长大研究[J]. 金属学报, 1999, 35(8): 834-836 .
[12] 李玉海; 娄太平; 隋智通 . 热处理条件对钙钛矿相析出行为的影响[J]. 金属学报, 1999, 35(11): 1130-1134 .