Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1586-1594    DOI: 10.11900/0412.1961.2016.00203
  本期目录 | 过刊浏览 |
水分子在Au和Cu及其合金表面的吸附与分解DFT计算研究*
蒋宗佑1,2,赵宗彦1,2()
1 昆明理工大学材料科学与工程学院, 昆明 650093
2 云南大学材料科学与工程学院云南省微纳材料与技术重点实验室, 昆明 650504
STUDY ON ADSORPTION AND DISSOCIATION OF WATER MOLECULE ON Au, Cu AND THEIR ALLOYS' SURFACES BY DFT CALCULATIONS
Zongyou JIANG1,2,Zongyan ZHAO1,2()
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Yunnan Key Laboratory of Micro/Nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming 650504, China;
引用本文:

蒋宗佑,赵宗彦. 水分子在Au和Cu及其合金表面的吸附与分解DFT计算研究*[J]. 金属学报, 2016, 52(12): 1586-1594.
Zongyou JIANG, Zongyan ZHAO. STUDY ON ADSORPTION AND DISSOCIATION OF WATER MOLECULE ON Au, Cu AND THEIR ALLOYS' SURFACES BY DFT CALCULATIONS[J]. Acta Metall Sin, 2016, 52(12): 1586-1594.

全文: PDF(1622 KB)   HTML
摘要: 

采用密度泛函方法研究了水分子在Au, Cu和AuCu二元金属合金表面的不同吸附状态和裂解反应路径, 并且比较不同表面的催化性能. 结果表明, 研究中所考虑4种模型的反应活性顺序如下(以反应活化能为比较标准): Au(111) < AuCu(111)-Cu < AuCu(111)-Au < Cu(111). 相对于AuCu(111)-Cu表面和Au(111)表面, 这与水分子的分子吸附状态在AuCu(111)-Au表面和Cu(111)表面的吸附能相对较小, 而解离吸附状态时的吸附能相对较大有关. 根据金属催化剂表面与吸附物的电子转移和成键电子结构, 认为电子转移越多, 与表面的相互作用越强; 而金属原子的d电子态与水分子1b1电子态或者裂解产物的类1b1电子态之间的重叠、杂化程度决定了两者之间相互作用的强弱. 在实际反应体系中, 用AuCu二元金属合金替代贵金属Au催化剂不仅可以降低材料成本, 还可以提高反应活性.

关键词 水分解,二元金属合金,密度泛函理论计算,催化反应    
Abstract

In order to reduce the amount and cost of gold catalyst in practical application, it is an effective technical strategy to construct binary metal alloy with gold and transition metals. In this work, the adsorption behaviors and dissociation reaction path of water on the different surfaces of Au, Cu, and AuCu binary alloy were studied by using DFT calculations. Based on the calculations, the corresponding catalytic performance of each model was further analyzed. The calculated results showed that the catalytic activity of the considered four surface models is on the following order: Au(111) < AuCu(111)-Cu < AuCu(111)-Au < Cu(111), if using the active energy as comparison standard. The underlying reason of this phenomenon is closely related with the adsorption behavior: the molecular adsorptions of water on Cu(111) and AuCu(111)-Au surfaces have relatively small adsorption energies; while at the same time, the dissociation adsorptions of water on these two surfaces have relatively large adsorption energies. Based on the electron transfer and bonding electronic structure, it could be found that the more electrons transfer between surface and water or H+OH groups, the more strong interaction between catalyst and adsorbate. Furthermore, the overlapping or hybridization between the d states of metal atoms on the surface and the 1b1 states of water or lb1-like states of H+OH groups also determines this interaction. Therefore, using AuCu binary alloy to replace Au as catalyst or co-catalyst reduces cost, and enhances the catalytic activity.

Key wordswater dissociation,    binary metal alloy    DFT calculation,    catalytic reaction
收稿日期: 2016-05-27     
基金资助:* 国家自然科学基金项目21263006和云南省中青年学术和技术带头人后备人才项目2015HB015资助
图1  水分子在Au(111)表面上不同的吸附状态与反应路径, 及分子吸附和解离吸附的局部构型
Model State dOW-HW / nm HW-OW-HW /(°) dM-HW/ nm dM-OW / nm ∠W-S /(°)
Au(111) IS 0.0984 0.0985 104.587 0.3276 0.3185 0.2571 4.375
TS 0.0983 0.1883 154.758 0.3768 0.1641 0.2125 78.141
FS 0.0986 0.2237 153.875 0.3664 0.1619 0.2113 57.029
Cu(111) IS 0.0988 0.0988 105.354 0.2857 0.2858 0.2168 15.190
TS 0.0987 0.1569 126.960 0.2778 0.1773 0.1968 41.649
FS 0.0981 0.3866 95.969 0.2731 0.1735 0.1997 88.792
AuCu(111)-Au IS 0.0983 0.0985 105.055 0.3646 0.3135 0.2646 13.405
TS 0.0986 0.1503 141.136 0.2922a 0.1839a 0.2310a 38.957
0.2992b 0.1915b 0.2314b
FS 0.0982 0.3077 95.809 0.1972a 0.1762a 0.1745a 83.432
0.2527b 0.1727b 0.1874b
AuCu(111)-Cu IS 0.0987 0.0988 105.907 0.3226 0.3053 0.2136 20.408
TS 0.0975 0.2211 127.245 0.2931a 0.1624a 0.1852a 21.010
0.3097b 0.2483b 0.2997b
FS 0.0987 0.4212 114.274 0.2587a 0.1914a 0.1905a 22.745
0.2872b 0.1755b 0.2328b
表1  本工作计算得到水分子在不同材料表面吸附与解离的结构参数
图2  水分子在Cu(111)表面上不同的吸附状态与反应路径, 及分子吸附和解离吸附的局部构型
图3  水分子在AuCu(111)-Au表面上不同的吸附状态与反应路径, 及分子吸附和解离吸附的局部构型
图4  水分子在AuCu(111)-Cu表面上不同的吸附状态与反应路径, 及分子吸附和解离吸附的局部构型
图5  水分子在Au(111), Cu(111), AuCu(111)不同吸附状态沿表面法线方向的平均差分电子密度图
图6  水分子在不同表面上以分子吸附或解离吸附时的局域分波态密度图
[1] Benton A F, Elgin J C.J Am Chem Soc, 1926; 48: 3027
[2] Hutchings G J.J Catal, 1985; 96: 292
[3] Haruta M, Kobayashi T, Sano H, Yamada N.Chem Lett, 1987; 16: 405
[4] Haruta M, Yamada N, Kobayashi T, Iijima S.J Catal, 1989; 115: 301
[5] Friend C M, Hashmi A S K.Accounts Chem Res, 2014; 47: 729
[6] Wu C Y, Horibe T, Jacobsen C B, Toste F D.Nature, 2015; 517: 449
[7] Qiao B T, Lin J, Wang A Q, Chen Y, Zhang T, Liu J Y.Chin J Catal, 2015; 36: 1505
[7] (乔波涛, 林坚, 王爱琴, 陈洋, 张涛, 刘景月. 催化学报, 2015; 36: 1505)
[8] Dai W J, Yan J Q, Dai K, Li L D, Guan N J. Chin J Catal, 2015; 36: 1968
[8] (代卫炯, 闫俊青, 戴珂, 李兰冬, 关乃佳. 催化学报, 2015; 36: 1968)
[9] Du C, Gao X H, Chen W.Chin J Catal, 2016; 37: 1049(杜诚, 高小惠, 陈卫. 催化学报, 2016; 37: 1049)
[10] Wang J, Cui D M.Chin J Org Chem, 2016; 36: 1163(王剑, 崔冬梅. 有机化学, 2016; 36: 1163)
[11] Yan K, Liao J Y, Wu X, Xie X N.RSC Adv, 2013; 3: 3853
[12] Konkolewicz D, Schr?der K, Buback J, Bernhard S, Matyjaszewski K.ACS Macro Lett, 2012; 1: 1219
[13] Ullmann F, Bielecki J.Ber Deutsch Chem Ges, 1901; 34: 2174
[14] Nadler R, Sanz J F.J Mol Model, 2012; 18: 2433
[15] Shao L, Wang Y H, Zhang D Y, Xu J, Hu X P.Angew Chem Int Ed, 2016; 55: 5014
[16] Li J Y, Peng J J, Bai Y, Hu Y Q, Zhang G D, Lai G Q.Chin J Org Chem, 2009; 29: 1938
[16] (厉嘉云, 彭家建, 白赢, 胡应乾, 张国栋, 来国桥. 有机化学, 2009; 29: 1938)
[17] Manthiram K, Beberwyck B J, Alivisatos A P.J Am Chem Soc, 2014; 136: 13319
[18] Kundu J, Pradhan D.ACS Appl Mater Interfaces, 2014; 6: 1823
[19] Xi Z F.Sci China. 2009; 39B: 1115(席振峰. 中国科学, 2009; 39B: 1115)
[20] Fiorenza R, Crisafulli C, Condorelli G G, Lupo F, Scirè S.Catal Lett, 2015; 145: 1691
[21] Li L C, Wang C S, Ma X X, Yang Z H, Lu X H.Chin J Catal, 2012; 33: 1778)
[21] (李力成, 王昌松, 马璇璇, 杨祝红, 陆小华. 催化学报, 2012; 33: 1778)
[22] Kunimoto M, Nakai H, Homma T.ECS Trans, 2014; 58: 73
[23] Liu T H, Zhang Z J, Fu B, Yang X M, Zhang D H.Chem Sci, 2016; 7: 1840
[24] Nie X W, Luo W J, Janik M J, Asthagiri A.J Catal, 2014; 312: 108
[25] Sansa M, Dhouib A, Guesmi H. J Chem Phys, 2014; 141: 064709
[26] Zhang N L, Chen X, Lu Y J, An L, Li X, Xia D.Small, 2014; 10: 2662
[1] 兰尧中;刘纯鹏. 催化还原碳钛磁铁矿反应动力学[J]. 金属学报, 1996, 32(5): 502-503.