Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1536-1544    DOI: 10.11900/0412.1961.2016.00186
  本期目录 | 过刊浏览 |
冷拔珠光体钢的组织演变对其点蚀行为的影响*
何岳1,向嵩1,2,3(),石维1,2,刘建敏1,梁宇1,2,陈朝轶1
1 贵州大学材料与冶金学院, 贵阳 5500252 贵州省材料结构与强度重点实验室, 贵阳 5500253 北京科技大学新金属材料国家重点实验室, 北京 100083
EFFECT OF MICROSTRUCTURAL EVOLUTION ON THE PITTING CORROSION OF COLD DRAWING PEARLITIC STEELS
Yue HE1,Song XIANG1,2,3(),Wei SHI1,2,Jianmin LIU1,Yu LIANG1,2,Chaoyi CHEN1
1 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2 Guizhou Key Laboratory for Mechanical Behavior and Micro Structure of Materials, Guiyang 550025, China
3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
Yue HE, Song XIANG, Wei SHI, Jianmin LIU, Yu LIANG, Chaoyi CHEN. EFFECT OF MICROSTRUCTURAL EVOLUTION ON THE PITTING CORROSION OF COLD DRAWING PEARLITIC STEELS[J]. Acta Metall Sin, 2016, 52(12): 1536-1544.

全文: PDF(11797 KB)   HTML
摘要: 

通过OM, SEM, EBSD观察和EIS谱、动电位极化曲线测试等手段分析了不同应变下冷拔珠光体钢的腐蚀形貌、组织演变及点蚀在其演变组织中的分布和铁素体取向差分布, 研究了冷拔珠光体钢的横纵截面组织演变对其点蚀行为的影响. 结果表明, 由于横截面和纵截面组织演变规律的不同, 不同应变下冷拔珠光体钢的横截面和纵截面的耐蚀性分别表现出不同的变化规律: 随着应变的增加, 横截面耐蚀性持续下降, 而纵截面耐蚀性先降低后回升. 通过表征点蚀在冷拔演变组织中的分布规律, 发现珠光体组织的晶界、珠光体团界面、相界面对点蚀敏感性高, 是点蚀倾向于萌生和生长的区域, 冷拔变形造成界面面积增加, 使横截面和处于第一阶段应变ε ≤1.2的纵截面的耐蚀性显著下降. 铁素体<110>织构形成导致晶体取向差分布规律的改变会使纵截面在第二阶段ε =1.6的耐蚀性改善.

关键词 冷拔珠光体钢,点蚀,组织演变,电子背散射衍射(EBSD)    
Abstract

Heavily cold drawing pearlitic steel wires are widely used for aerospace, tire cord, suspension bridge cable, and architecture due to the high strength with acceptable level of ductility. For marine steel wires, which are widely applied in the marine and offshore structures enduring the effect of stress and corrosion, the corrosion performance is significant. Corrosion is a primary cause of structural deterioration for marine and offshore structures, which results in structural failure, leakage, product loss, environmental pollution and the loss of life. Numerous studies have been devoted to the microstructure evolution or cementite dissolution induced by cold drawing. With respect to the effect of microstructure evolution on the performance of pearlitic steel, the views were mainly focused on the mechanical performance, and only a little attention was paid to the effect of microstructure evolution on the corrosion behavior of pearlitic steel. Hence, it is still unclear whether and how the cold drawing influences the corrosion resistance of pearlitic steel. In this work, the effect of microstructure evolution on the pitting corrosion of pearlitic steel was investigated. The electrochemical measurements were carried out by electrochemical impedance spectroscopy and potentiodynamic measurement. Meanwhile, the corrosion morphology after immersion for 5 d was observed by standard visual techniques. The results indicate that corrosion resistance of cross section decreases with increasing the strain of cold drawing, while the corrosion resistance of longitudinal section decreases in the first stage of cold drawing (strain ε ≤1.2) but increases in the second step of cold drawing (ε =1.6). By characterizing the distribution of pits in the evolutionary microstructure induced by cold drawing, the grain boundary, the pearlite colony boundary and the phase boundary where the pits are inclined to initiate and propagation, are sensitive to pitting. Thus, the decrease of corrosion resistance of cross section and longitudinal section in the first stage of cold drawing (ε ≤1.2) is due to the multiplication of interface, which increases the pitting sensibility of microstructure. Electron backscattered scattering detection was used to quantify the content of <110> texture of pearlitic steels with different strains. The result showed that the improvement of corrosion resistance of the longitudinal section in the second stage of cold drawing (ε =1.6) is due to the variation of misorientation angle distribution caused by the formation of <110> texture.

Key wordscold    drawing    pearlitic    steel,    pitting    corrosion,    microstructure    evolution,    EBSD
收稿日期: 2016-05-13     
基金资助:* 国家自然科学基金项目51361004, 51574095和51661006, 贵州省百层次创新型人才项目20164014, 贵州省科技计划项目20147001, 20142003, 20147603和20152031及贵州大学人才项目201448资助
图1  不同应变量的冷拔珠光体钢横纵截面的Nyquist图及极化电阻和电容随应变的变化关系
图2  不同应变下冷拔珠光体钢横纵截面的动电位极化曲线及点蚀分布
图3  不同应变下冷拔钢丝横纵截面浸泡5 d后的腐蚀形貌
图4  不同应变冷拔钢横截面组织演变及点蚀分布情况
图5  不同应变量冷拔钢纵截面组织演变及点蚀分布情况
图6  不同应变冷拔钢丝纵截面EBSD反极图
图7  不同应变冷拔钢丝纵截面的织构组织定量分析
图8  不同应变冷拔钢丝纵截面的晶粒取向差分布定量分析
[1] Bhandari J, Khan F, Abbassi R, Garaniya V, Ojeda R.J Loss Prev Process Ind, 2015; 37: 39
[2] Bang C W, Seol J B, Yang Y S, Park C G.Scr Mater, 2015; 108: 151
[3] Lamontagne A, Massardier V, Kléber X, Sauvage X, Mari D.Mater Sci Eng, 2015; A644: 105
[4] Zhang X, Godfrey A, Huang X, Hansen N, Liu Q.Acta Mater, 2011; 59: 3422
[5] Zelin M.Acta Mater, 2002; 50: 4431
[6] Toribio J, González B, Matos J C, Ayaso F J.Int J Fatigue, 2015; 76: 53
[7] Zhao T Z, Zhang S H, Zhang G L, Song H W, Cheng M.Mater Des, 2014; 59: 397
[8] Toribio J, González B, Matos J C.Eng Fract Mech, 2010; 77: 2024
[9] Elices M.J Mater Sci, 2004; 39: 3889
[10] Sánchez J, Fullea J, Andrade C, Gaitero J J, Porro A. Corros Sci, 2008; 50: 1820
[11] Rault V, Vignal V, Krawiec H, Tadjoa O.Corros Sci, 2014; 86: 275
[12] Guo Y, Sun T, Hu J, Jiang Y, Jiang L, Li J.J Alloys Compd, 2016; 658: 1031
[13] Ren Y, Zhao H, Liu W, Yang K.Mater Sci Eng, 2016; C60: 293
[14] Feng X, Lu X, Zuo Y, Zhuang N, Chen D.Corros Sci, 2016; 103: 223
[15] Cheng Y F, Yang C, Luo J L.Thin Solid Films, 2002; 416: 169
[16] Zhang F, Pan J, Lin C. Corros Sci, 2009; 51: 2130
[17] Wang H, Xie J, Yan K P, Duan M, Zuo Y.Corros Sci, 2009; 51: 181
[18] Guo N.PhD Dissertation, Chongqing University, 2012
[18] (郭宁. 重庆大学博士学位论文, 2012)
[19] Zhang X D, Godfrey A, Hansen N, Huang X.Acta Mater, 2013; 61: 4898
[20] Zhang X D.PhD Dissertation, Tsinghua Univerisity, Beijing, 2009
[20] (张晓丹. 清华大学博士学位论文, 北京, 2009)
[21] Zhang X D, Godfrey A, Liu W, Liu Q.Acta Metall Sin, 2010; 46: 141
[21] (张晓丹, Godfrey A, 刘伟, 刘庆. 金属学报, 2010; 46: 141)
[22] Cao C N, Xiao J M.Principles of Material Corrosion. Beijing: Chemical Industry Press, 2004: 48
[22] (曹楚南, 肖纪美. 材料腐蚀学原理. 北京: 化学工业出版社, 2004: 48)
[23] Burstein G T, Pistorius P C, Mattin S P.Corros Sci, 1993; 35: 57
[24] Yang D J. Metal Corrosion.Beijing: Metallurgical Industry Press, 1999: 97
[24] (杨德钧. 金属腐蚀学. 北京: 冶金工业出版社, 1999: 97)
[25] Yu Y N.Fundamental of Materials Science. Beijing: Higher Education Press, 2012: 421
[25] (余永宁. 材料科学基础. 北京: 高等教育出版社, 2012: 421)
[26] Rault V, Vignal V, Krawiec H, Dufour F.Corros Sci, 2015; 100: 667
[27] Li Y J, Choi P, Borchers C, Chen Y Z, Goto S, Raabe D, Kirchheim R.Ultramicroscopy, 2011; 111: 628
[28] Min N, Li W, Li H, Jin X.J Mater Sci Technol, 2010; 26: 776
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[4] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[5] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[6] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[7] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[10] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[11] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[12] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[13] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[14] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[15] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.