Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 220-226    DOI: 10.11900/0412.1961.2016.00168
  本期目录 | 过刊浏览 |
室温累积叠轧Mg/Al多层复合板材的界面表征
常海1(),郑明毅2,甘为民4
1 北京科技大学国家材料服役安全科学中心 北京 100083
2 哈尔滨工业大学材料学院 哈尔滨 150001
3 Institute of Materials Science and Engineering, Clausthal Unviersity of Technology, Clausthal-Zellerfeld D38678, Germany4 Helmholtz-Zentrum Geesthacht, Out Station at FRM2, Garching 85747, Germany
Interface Characterization of the Mg/Al Laiminated Composite Fabricated by Accumulative Roll Bonding at Ambient Temperature
Hai CHANG1(),Mingyi ZHENG2,Guenter Brokmeier Heinz3,Weimin GAN4
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2 School of Materials, Harbin Institute of Technology, Harbin 150001, China
3 Institute of Materials Science and Engineering, Clausthal Unviersity of Technology, Clausthal-Zellerfeld D38678, Germany
4 Helmholtz-Zentrum Geesthacht, Out Station at FRM2, Garching 85747, Germany
引用本文:

常海,郑明毅,甘为民. 室温累积叠轧Mg/Al多层复合板材的界面表征[J]. 金属学报, 2017, 53(2): 220-226.
Hai CHANG, Mingyi ZHENG, Guenter Brokmeier Heinz, Weimin GAN. Interface Characterization of the Mg/Al Laiminated Composite Fabricated by Accumulative Roll Bonding at Ambient Temperature[J]. Acta Metall Sin, 2017, 53(2): 220-226.

全文: PDF(6984 KB)   HTML
摘要: 

通过室温累积叠轧技术制备了Mg/Al多层复合板材,借助SEM、EDS、TEM和同步辐射CT形貌观察等先进表征手段对累积叠轧Mg/Al金属复合板材界面结合进行表征,揭示累积叠轧Mg/Al金属复合板材界面宏观结合状态以及微观界面结构。结果表明,Mg/Al复合板材界面总体上结合良好,没有明显孔洞和开裂,但板材内部仍然存在一些孔洞和局部微小裂纹。3次循环后Mg/Al界面处形成了厚度为150 nm的Mg17Al12层。Mg和Mg17Al12之间存在一种确定的晶体学位相关系[11?1?]Mg17Al12//[12?10]Mg110Mg17Al12//(1?011?)Mg,而Mg17Al12和Al之间是否有位相关系并不明显。

关键词 累积叠轧Mg/Al多层复合板材界面宏观结合界面结构位相关系    
Abstract

Mg and its alloy have large potential in weight reduction usages because of their low density. However, the relatively low strength and modulus hinder their widely applications. Accumulative roll bonding (ARB) is one kind of severe plastic deformation (SPD) process which can produce bulk ultra-fine-grained (UFG) metallic materials. In order to improve the strength, elastic modulus and corrosion resistance of Mg sheet, accumulative roll bonding was utilized to fabricate UFG Mg/Al laminated composites at ambient temperature in this work. Synchrotron radiation-based computer tomography, SEM and TEM were employed to characterize the global bonding condition and the interface structure of Mg/Al lam inated sheet ARBed after 3 cycles. No obvious cracks could be observed along the bonding interfaces during ARB, although small amount of tiny pores existed in some area. Mg17Al12 phase with thickness of 150 nm formed at Mg/Al interface after 3 cycles. There existed a definite orientation relationship between Mg17Al12 and Mg which is [11?1?]Mg17Al12//[12?10]Mg, (110)Mg17Al12//(1?011?)Mg. Nevertheless, the orientation relationship between Mg17Al12 and Al is not very obvious.

Key wordsaccumulative roll bonding    Mg/Al laminated composite    global bonding condition    interface structure    orientation relationship
收稿日期: 2016-05-03     
基金资助:国家自然科学基金项目Nos.51201006和51071057,以及高等学校学科创新引智计划项目No.B12012
图1  Mg/Al复合板材的累积叠轧工艺示意图
图2  累积叠轧Mg/Al复合板材的纵截面SEM像
图3  Mg/Al界面SEM像及EDS线扫描分析
图4  经过3次循环轧制板材沿横向不同深度纵截面同步辐射CT切片形貌
图5  室温3次循环轧制后的Mg/Al界面TEM像及EDS分析
图6  图5b中区域1的HRTEM像及SAED 谱
图7  图5b中区域2的HRTEM像及FFT谱
图8  图5b中区域3的HRTEM像及FFT谱
[1] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
[2] Valiev R Z, Estrin Y, Horita Z, et al.Producing bulk ultrafine-grained materials by severe plastic deformation[J]. JOM, 2006, 58(4): 33
[3] Saito Y, Tsuji N, Utsunomiya H, et al.Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 1998, 39: 1221
[4] Saito Y, Utsunomiya H, Tsuji N, et al.Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process[J]. Acta Mater., 1999, 47: 579
[5] Lee S H, Saito Y, Tsuji N, et al.Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 2002, 46: 281
[6] del Valle J A, Pérez-Prado M T, Ruano O A. Accumulative roll bonding of a Mg-based AZ61 alloy [J]. Mater. Sci. Eng., 2005, A410-411: 353
[7] Kwan C, Wang Z R, Kang S B.Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100[J]. Mater. Sci. Eng., 2008, A480: 148
[8] Min G H, Lee J M, Kang S B, et al.Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process[J]. Mater. Lett., 2006, 60: 3255
[9] Ohsaki S, Kato S, Tsuji N, et al.Bulk mechanical alloying of Cu-Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process[J]. Acta Mater., 2007, 55: 2885
[10] Chen M C, Hsieh H C, Wu W T.The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite[J]. J. Alloys Compd., 2006, 416: 169
[11] Chen M C, Kuo C W, Chang C M, et al.Diffusion and formation of intermetallic compounds during accumulative roll-bonding of Al/Mg alloys[J]. Mater. Trans., 2007, 48: 2595
[12] Jamaati R, Toroghinejad M R, Najafizadeh A.An alternative method of processing MMCs by CAR process[J]. Mater. Sci. Eng., 2010, A527: 2720
[13] Dehsorkhi R N, Qods F, Tajally M.Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process[J]. Mater. Sci. Eng., 2011, A530: 63
[14] Amirkhanlou S, Jamaati R, Niroumand B, et al.Fabrication and characterization of Al/SiCp composites by CAR process[J]. Mater. Sci. Eng., 2011, A528: 4462
[15] Jamaati R, Amirkhanlou S, Toroghinejad M R, et al.Comparison of the microstructure and mechanical properties of as-cast A356/SiC MMC processed by ARB and CAR methods[J]. J. Mater. Eng. Perform., 2012, 21: 1249
[16] Karimi M, Toroghinejad M R.An alternative method for manufacturing high-strength CP Ti-SiC composites by accumulative roll bonding process[J]. Mater. Des., 2014, 59: 494
[17] Alizadeh M, Beni H A.Strength prediction of the ARBed Al/Al2O3/B4C nano-composites using Orowan model[J]. Mater. Res. Bull., 2014, 59: 290
[18] Ahmadi A, Toroghinejad M R, Najafizadeh A.Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process[J]. Mater. Des., 2014, 53: 13
[19] Mara N A, Beyerlein I J.Review: effect of bimetal interface structure on the mechanical behavior of Cu-Nb fcc-bcc nanolayered composites[J]. J. Mater. Sci., 2014, 49: 6497
[20] Beyerlein I J, Mara N A, Wang J, et al.Structure-property-functionality of bimetal interfaces[J]. JOM, 2012, 64(10): 1192
[21] Zhang H, Toda H, Qu P C, et al.Three-dimensional fatigue crack growth behavior in an aluminum alloy investigated with in situ high-resolution synchrotron X-ray microtomography[J]. Acta Mater., 2009, 57: 3287
[22] Williams J J, Flom Z, Amell A A, et al.Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography[J]. Acta Mater., 2010, 58: 6194
[23] Chen Z J, Wu X, Hu H B, et al.Effect of individual layer shape on the mechanical properties of dissimilar Al alloys laminated metal composite sheets[J]. J. Mater. Eng. Perform., 2014, 23: 990
[24] Ma M, Huo P, Liu W C, et al.Microstructure and mechanical properties of Al/Ti/Al laminated composites prepared by roll bonding[J]. Mater. Sci. Eng., 2015, A636: 301
[25] Motevalli P D, Eghbali B.Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding[J]. Mater. Sci. Eng., 2015, A628: 135
[26] Jamaati R, Toroghinejad M R.Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process[J]. Mater. Des., 2010, 31: 4508
[1] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[2] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[3] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[4] 范同祥, 刘悦, 杨昆明, 宋健, 张荻. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32.
[5] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[6] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[7] 王尧,朱晓莹,刘贵民,杜军. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性[J]. 金属学报, 2017, 53(2): 183-191.
[8] 李眉娟,刘晓龙,刘蕴韬,郑明毅,王琛,陈东风. 累积叠轧Mg/Al多层复合板材的织构演变及力学性能*[J]. 金属学报, 2016, 52(4): 463-472.
[9] 江智,田艳红,丁苏. Sn3.5Ag0.5Cu纳米颗粒钎料制备及钎焊机理*[J]. 金属学报, 2016, 52(1): 105-112.
[10] 羊浩, 黄继华, 陈树海, 赵兴科, 王奇, 李德华. Zn-Al钎料成分对Cu/Zn-Al/Al钎焊接头界面结构及性能的影响[J]. 金属学报, 2015, 51(3): 364-370.
[11] 戴付志, 张文征. 双相不锈钢中沉淀相平衡形貌及界面结构的原子尺度计算[J]. 金属学报, 2014, 50(9): 1123-1127.
[12] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[13] 詹美燕,李春明,张卫文. 累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究[J]. 金属学报, 2012, 48(6): 709-616.
[14] 王辉 何思渊 褚旭明 何德坪. Zn--Al--Cu基合金无钎剂钎焊泡沫铝的界面结构及力学性能[J]. 金属学报, 2009, 45(6): 723-728.
[15] 刘庆 姚宗勇 A. Godfrey 刘伟. 中低应变量冷轧AA1050铝合金中晶粒取向与形变位错界面的演变[J]. 金属学报, 2009, 45(6): 641-646.