Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 175-182    DOI: 10.11900/0412.1961.2016.00167
  本期目录 | 过刊浏览 |
高Co-Ni二次硬化钢的设计准则与时效工艺分析
王晨充1,张弛1(),杨志刚1,苏杰2,翁宇庆2
1 清华大学材料学院先进材料教育部重点实验室 北京100084
2 北京钢铁研究总院 北京 100081
Design Standard and Analysis of Ageing Process in High Co-Ni Secondary Hardening Steel
Chenchong WANG1,Chi ZHANG1(),Zhigang YANG1,Jie SU2,Yuqing WENG2
1 Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 Central Iron and Steel Research Institute, Beijing 100081, China
全文: PDF(1790 KB)   HTML  
摘要: 

通过对已有高Co-Ni二次硬化钢实验结果的分析,提出了基于纳米级奥氏体层的相变诱导塑性(TRIP)效应和纳米级M2C碳化物析出的强韧化机理,并根据AerMet100钢大量已有的实验数据,建立了综合考虑奥氏体相变摩尔体积增量、奥氏体层稳定性、奥氏体层厚度、奥氏体平衡含量、M2C尺寸、M2C平衡含量、成本控制等多个因素的设计准则。通过控制时效工艺,将高Co-Ni二次硬化钢中的M2C相尺寸控制在1~5 nm,奥氏体层厚度控制在10~20 nm。M2C和奥氏体的平衡含量被分别控制在19.5%和3.8%。根据设计准则分析了新型高Co-Ni二次硬化钢M54的时效工艺制度,模拟设计结果与显微组织实验观察结果基本吻合。设计得到的新型高Co-Ni二次硬化钢具有较好的强度(2021 MPa)和韧性(115 MPam1/2)。

关键词 奥氏体层M2C析出相粗化动力学时效工艺    
Abstract

High Co-Ni secondary hardening steels have received great attention for a long time. In several decades, many previous studies were made to improve their strength, toughness, corrosion resistance ability and even stress corrosion sensibility. Although many new kinds of high Co-Ni secondary hardening steels were developed by researchers, the mechanisms of strength and toughness were still a problem, which would inhibit the further development of high Co-Ni secondary hardening steels. In this work, both microstructure and mechanical properties of high Co-Ni secondary hardening steels were analyzed by simulation and experiment. The strengthening and toughening mechanism was explained, which included the transformation induced plasticity (TRIP) effect of austenite layer in nanometer size and the precipitation of M2C in nanometer size. According to the previous studies about AerMet100 steel, the design standard for high Co-Ni secondary hardening steels was established, which included the mole volume change for austenite, the stability of austenite, the austenite thickness, the austenite equilibrium content, the M2C size, the M2C equilibrium content and cost control. Based on this design standard, the ageing process for a new high Co-Ni secondary hardening steel was analyzed. By controlling the ageing process as 515 ℃ for 10 h, based on the design standard, M2C with the size of 1~5 nm and austenite layers with the thickness of 10~20 nm was formed in new high Co-Ni secondary hardening steels. The equilibrium content of M2C and austenite layers were controlled as 19.5% and 3.8%, respectively. The simulation results were basically consistent with the microstructure observation results. The high Co-Ni secondary hardening steel treated by the designed heat treatment process has considerable strength (2021 MPa) and toughness (115 MPam1/2). Both simulation and experimental results showed that this design standard of ageing process for high Co-Ni secondary hardening steels can help to obtain steels with high strength and toughness.

Key wordsaustenite layer    M2C precipitation    coarsen kinetics    ageing process
收稿日期: 2016-05-03      出版日期: 2016-11-25
基金资助:国家自然科学基金项目Nos.51171087和51471094

引用本文:

王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
Chenchong WANG,Chi ZHANG,Zhigang YANG,Jie SU,Yuqing WENG. Design Standard and Analysis of Ageing Process in High Co-Ni Secondary Hardening Steel. Acta Metall, 2017, 53(2): 175-182.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00167      或      http://www.ams.org.cn/CN/Y2017/V53/I2/175

Element kμ/ (Jmol-1) k0/ (Jmol-1)
C 3807 21216
Co -352 -724
Ni 172 345
Cr 1868 3923
Mo 1418 2918
W 714 1469
V 1618 3330
表1  元素的无热和热摩擦功系数[14]
图1  AerMet100钢时效温度与其奥氏体层稳定性的关系
图2  AerMet100 钢奥氏体层的模拟和实验结果对比
图3  AerMet100钢奥氏体层平衡含量模拟结果
图4  AerMet100钢M2C相的模拟和实验结果对比
图5  AerMet100钢中M2C相的平衡含量模拟结果
图6  M54钢时效工艺模拟设计结果
Design factor Austenite layer M2C Other
Extra volume Stability
Jmol-1
Thickness
nm
Content
%
Radius
nm
Content
%
Ageing time
h
Range 0.025 5500~6500 10~20 19~23 1~5 >3.5 5~20
Simulation of M54
(515 ℃ for 10 h)
0.028 5990 11 19.5 4.6 3.8 10
State Meet Meet Meet Meet Meet Meet Meet
表2  M54钢时效工艺制定的设计准则和模拟
图7  515 ℃时效10 h 条件下M54钢的TEM像
Steel Ageing process Tensile strength / MPa Toughness / (MPam1/2)
AerMet100 482 ℃, 5 h 1966 110
M54 515 ℃, 10 h 2021 115
表3  高Co-Ni二次硬化钢力学性能结果
[1] Hu Z F, Wu X F, Wang C X.Coarsening kinetics of multi-component M2C precipitates in secondary hardening alloy steels[J]. Acta Metall. Sin., 2003, 39: 585
[1] (胡正飞, 吴杏芳, 王春旭. 二次硬化合金钢中多组元强化相M2C碳化物的粗化动力学研究[J]. 金属学报, 2003, 39: 585)
[2] Ling B, Zhong P, Zhong B W, et al.TEM observation of the secondary hardening process in Ni10Co14 steels[J]. Acta Metall. Sin., 1995, 31: 209
[2] (凌斌, 钟平, 钟炳文等. Ni10Co14钢的二次硬化过程的TEM观察[J]. 金属学报, 1995, 31: 209)
[3] Ayer M, Machmeier P.On the characteristics of M2C carbides in the peak hardening regime of AerMet 100 steel[J]. Metall. Mater. Trans., 1998, 29A: 903
[4] Wang C C, Zhang C, Yang Z G.Austenite layer and precipitation in high Co-Ni maraging steel[J]. Micron, 2014, 67: 112
[5] Olson G B. Advances in theory: Martensite by design[D] [J]. Mater. Sci. Eng., 2006, A438-440: 48
[6] Olson G B.Genomic materials design: The ferrous frontier[J]. Acta Mater., 2013, 61: 771
[7] Olson G B, Kuehmann C J.Materials genomics: From CALPHAD to flight[J]. Scr. Mater., 2014, 70: 25
[8] Yoo C H, Lee H M, Chan J W, et al.M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel[J]. Metall. Mater. Trans., 1996, 27A: 3466
[9] Ayer M, Machmeier P M.Transmission electron microscopy examination of hardening and toughening phenomena in Aermet 100[J]. Metall. Trans., 1993, 24A: 1943
[10] Wang C C, Zhang C, Yang Z G, et al.Analysis of fracture toughness in high Co-Ni secondary hardening steel using FEM[J]. Mater. Sci. Eng., 2015, A646: 1
[11] Wang C C, Zhang C, Yang Z G, et al.Multi-scale simulation of hydrogen influenced critical stress intensity in high Co-Ni secondary hardening steel[J]. Mater. Des., 2015, 87: 501
[12] Olson G B, Cohen M.Stress-assisted isothermal martensitic transformation: Application to TRIP steels[J]. Metall. Trans., 1982, 13A: 1907
[13] Olson G B, Cohen M.A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation[J]. Metall. Trans., 1976, 7A: 1897
[14] Ghosh G, Olson G B.Kinetics of F.C.C. →B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation[J]. Acta Metall. Mater., 1994, 42: 3361
[15] Lifshitz I M, Slyozov V V.The kinetics of precipitation from supersaturated solid solutions[J]. J. Phys. Chem. Solids, 1961, 19: 35
[16] Wagner C.Theory of precipitate change by redis-solution (Ostwald ripening)[J]. Z. Elektrochem., 1961, 65: 581
[17] Lee H M, Allen S M, Gruicic M.Coarsening resistance of M2C carbides in secondary hardening steels: Part I. Theoretical model for multicomponent coarsening kinetics[J]. Metall. Trans., 1991, 22A: 2863
[18] Wang Z Q, Sun X J, Yang Z G, et al.Carbide precipitation in austenite of a Ti-Mo-containing low-carbon steel during stress relaxation[J]. Mater. Sci. Eng., 2013, A573: 84
[19] Xia Z X, Zhang C, Lan H, et al.Effect of magnetic field on interfacial energy and precipitation behavior of carbides in reduced activation steels[J]. Mater. Lett., 2011, 65: 937
[20] Tao P, Zhang C, Yang Z G, et al.Evolution and coarsening of carbides in 2.25Cr-1Mo steel weld metal during high temperature tempering[J]. J. Iron Steel Res. Int., 2010, 17: 74
[21] Wang J S, Mulholland M D, Olson G B, et al.Prediction of the yield strength of a secondary-hardening steel[J]. Acta Mater., 2013, 61: 4939
[22] Scandella F, Atamert S, Knowles D M.Evaluation of hot strip mill backup roll cladding[J]. J. Mater. Sci. Technol., 2000, 16: 491
[23] Wang X R, Yan M F, Meng Q C.TEM observation of precipitation phase produced during tempering of steel AerMet100 and first principles calculations of phase evolution[J]. Rare Met., 2007, 26: 326
[24] He Y, Yang K, Qu W S, et al.Strengthening and toughening of a 2800-MPa grade maraging steel[J]. Mater. Lett., 2002, 56: 763
[25] Leitner H, Schober M, Schnitzer R, et al.Strengthening behavior of Fe-Cr-Ni-Al-(Ti) maraging steels[J]. Mater. Sci. Eng., 2011, A528: 5264
[26] Morral J E, Purdy G R.Particle coarsening in binary and multicomponent alloys[J]. Scr. Metall. Mater., 1994, 30: 905
[1] 赵彦,张洪宇,韦华,郑启,金涛,孙晓峰. 相场法研究含第二相颗粒多晶体系的晶粒粗化标度律[J]. 金属学报, 2013, 49(8): 981-988.
[2] 周广钊,王永欣,陈铮. 相场法模拟弹性应变能对Ti-Al-Nb合金 α2→ O相变粗化动力学的影响[J]. 金属学报, 2012, 48(4): 485-491.
[3] 王东 马宗义. 固溶处理后冷轧变形7050铝合金时效工艺研究[J]. 金属学报, 2010, 46(5): 581-588.