Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1053-1062    DOI: 10.11900/0412.1961.2016.00164
  论文 本期目录 | 过刊浏览 |
9Cr-ODS钢中纳米析出相的SAXS和TEM研究*
谢锐1,2,吕铮1(),卢晨阳1,李正元1,丁学勇2,刘春明1
1 东北大学材料科学与工程学院材料各向异性与织构教育部重点实验室, 沈阳 110819
2 东北大学冶金学院, 沈阳 110819
CHARACTERIZATION OF NANOSIZED PRECIPITATES IN 9Cr-ODS STEELS BY SAXS AND TEM
Rui XIE1,2,Zheng LU1(),Chenyang LU1,Zhengyuan LI1,Xueyong DING2,Chunming LIU1
1) Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2) School of Metallurgy, Northeastern University, Shenyang 110819, China;
全文: PDF(1557 KB)   HTML
摘要: 

对球磨不同时间的雾化合金粉采用热等静压烧结方法制备9Cr-ODS钢. 利用高能同步辐射小角X射线散射(SAXS), 配合高分辨透射电镜(HRTEM), 高角环形暗场(HAADF)像和电子背散射衍射(EBSD)研究了不同球磨时间合金粉制备的9Cr-ODS钢中纳米析出相的特征及其对组织和性能的影响. SAXS和TEM实验结果表明, 9Cr-ODS钢中富Y-Ti-O纳米团簇的尺寸随着球磨时间的延长不断下降, 分布密度峰值逐渐升高, 球磨20 h样品中富Y-Ti-O纳米团簇的分布密度峰值达到2.93×1023 m-3; 烧绿石结构Y2Ti2O7相的分布密度峰值在球磨8 h样品中最高(1.03×1022 m-3); 少量大尺寸富Ti, Al和O的析出相的分布密度随着球磨时间延长而增加, 出现核壳结构. 晶粒尺寸随着球磨时间的延长而细化, 屈服强度随着球磨时间的延长而升高. 富Y-Ti-O纳米析出相对材料强度的贡献占主导地位.

关键词 9Cr-ODS钢金属气雾化小角X射线散射(SAXS)富Y-Ti-O纳米团簇Y2Ti2O7屈服强度    
Abstract

Oxide dispersion strengthened (ODS) steels are the leading candidate structural materials for fast reactor and fusion reactor application due to excellent radiation tolerance and high temperature creep strength. High number density nanoscale oxides play a key role in controlling microstructure and properties. Atomized alloy powders with different ball-milling times were employed to produce 9Cr-ODS steels by hot isostatic pressing (HIP). Nanosized precipitates in 9Cr-ODS steels with different ball-milling times were characterized by synchrotron small angle X-ray scattering (SAXS) together with high resolution transmission electron microscopy (HRTEM). Grain morphology and size were observed by electron backscatter diffraction (EBSD). The effects of nanosized precipitates on grain size and mechanical properties were analyzed. SAXS and TEM results indicated that the size of Y-Ti-O-rich nano-clusters in 9Cr-ODS steels decreases with the increasing milling time, while the distribution density increases. The maximum value of distribution density is about 2.93×1023 m-3 in 9Cr-ODS steel ball milled for 20 h. The maximum value of distribution density of pyrochlore structure Y2Ti2O7 is the highest (1.03×1022 m-3) in 9Cr-ODS steel ball milled for 8 h. Some large-scale Ti-Al-O-rich precipitates are observed and show core/shell structure. Their distribution density increases with ball milling time. With increasing ball milling time, the grain size decreases and the yield strength increases. The contribution of Y-Ti-O-rich nanosized precipitates to yield strength is dominated.

Key words9Cr-ODS steel    metal gas atomization    SAXS    Y-Ti-O-rich nano-cluster    Y2Ti2O7    yield strength
收稿日期: 2016-04-29      出版日期: 2016-07-08
基金资助:* 国家自然科学基金项目51471049和高等学校博士学科点专项科研基金课题项目20130042110014资助

引用本文:

谢锐,吕铮,卢晨阳,李正元,丁学勇,刘春明. 9Cr-ODS钢中纳米析出相的SAXS和TEM研究*[J]. 金属学报, 2016, 52(9): 1053-1062.
Rui XIE,Zheng LU,Chenyang LU,Zhengyuan LI,Xueyong DING,Chunming LIU. CHARACTERIZATION OF NANOSIZED PRECIPITATES IN 9Cr-ODS STEELS BY SAXS AND TEM. Acta Metall Sin, 2016, 52(9): 1053-1062.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00164      或      http://www.ams.org.cn/CN/Y2016/V52/I9/1053

图1  不同球磨时间雾化合金粉制备的9Cr-ODS钢的SAXS曲线
图2  图1中SAXS曲线I区和II区拟合获得的纳米析出相尺寸分布
图3  不同球磨时间9Cr-ODS钢中的纳米析出相的HAADF像
图4  通过SAXS和HAADF获得的纳米析出相尺寸分布结果比较
图5  球磨8和20 h后9Cr-ODS钢中纳米析出相的HRTEM像及FFT像
Precipitate Zone (h1 k1 l1) Interplanar spacing (h2 k2 l2) Interplanar spacing (h3 k3 l3) Interplanar spacing
axis nm nm nm
Exp. Cal. Exp. Cal. Exp. Cal.
A [135] (42) 0.21 0.2061 (4) 0.21 0.2061 (26) 0.13 0.1348
B [129] (33) 0.23 0.2317 (20) 0.22 0.2256 (5) 0.19 0.1943
表1  图5中纳米析出相的晶面间距
图6  不同球磨时间9Cr-ODS钢中大尺寸析出相的TEM像
图7  不同球磨时间9Cr-ODS钢中存在的大尺寸析出相的EDS面扫描图
图8  不同球磨时间9Cr-ODS钢中大尺寸析出相的尺寸分布
图9  不同球磨时间9Cr-ODS钢的EBSD像和晶粒尺寸分布图
图10  不同球磨时间的9Cr-ODS钢的屈服强度
图11  雾化合金粉与常规工艺制备的9Cr-ODS钢室温应力-应变曲线
图12  9Cr-ODS钢室温的实测屈服强度与计算屈服强度的比较
[1] Odette G R, Alinger M J, Wirth B D.Annu Rev Mater Res, 2008; 38: 471
[2] Xie R, Lu Z, Lu C Y, Liu C M.J Nucl Mater, 2014; 455: 554
[3] Lu C Y, Lu Z, Xie R, Liu C M, Wang L M.J Nucl Mater, 2014; 455: 366
[4] Lü Z, Lu C Y, Zhang S H, Xie R, Liu C M.Acta Metall Sin, 2012; 48: 649
[4] (吕铮, 卢晨阳, 张守辉, 谢锐, 刘春明. 金属学报, 2012; 48: 649)
[5] Miao Y B, Mo K, Zhou Z J, Liu X, Lan K C, Zhang G M, Miller M K, Powers K A, Mei Z G, Park J S, Almer J, Stubbins J F.Mater Sci Eng, 2015; A639: 585
[6] Yutani K, Kishimoto H, Kasada R, Kimura A. J Nucl Mater, 2007; 367-370: 423
[7] Gao R, Zhang T, Wang X P, Fang Q F, Liu C S.J Nucl Mater, 2014; 444: 462
[8] Chen C L, Dong Y M.Mater Sci Eng, 2011; A528: 8374
[9] Oksiuta Z, Ozieblo A, Perkowski K, Osuchowski M, Lewandowska M.Fusion Eng Des, 2014; 89: 137
[10] Alinger M J, Odette G R, Hoelzer D T.Acta Mater, 2009; 57: 392
[11] Dou P, Kimura A, Kasada R, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe F.J Nucl Mater, 2014; 444: 441
[12] Geuser F D, Deschamps A.C R Physique, 2012; 13: 246
[13] Ohnuma M, Suzuki J, Ohtsuka S, Kim S W, Kaito T, Inoue M, Kitazawa H.Acta Mater, 2009; 57: 5571
[14] Li Z Y, Lu Z, Xie R, Lu C Y, Liu C M.Mater Sci Eng, 2016; A660: 52
[15] Hammersley A P.ESRF Internal Report, ESRF97HA02T, 1997
[16] Guinier A, Fournet G.Small-Angle Scattering of X-Rays. New York: John Wiley and Sons Inc, 1955: 34
[17] Ilavsky J, Jemian P R.J Appl Cryst, 2009; 42: 347
[18] Beaucage G, Schaefer D W. J Non-Cryst Solids, 1994; 172-174: 797
[19] Hirata A, Fujita T, Wen Y R, Schneibel J H, Liu C T, Chen M W.Nat Mater, 2011; 10: 922
[20] Sakasegawa H, Legendre F, Boulanger L, Brocq M, Chaffron L, Cozzika T, Malaplate J, Henry J, de Carlan Y.J Nucl Mater, 2011; 417: 229
[21] Xie R.PhD Dissertation, Northeastern University, Shenyang, 2015
[21] (谢锐. 东北大学博士学位论文, 沈阳, 2015)
[22] Xie R, Lu Z, Lu C Y, Liu C M. Adv Mater Res, 2014;887-888: 219
[23] Schneibel J H, Heilmaier M, Blum W, Hasemann G, Shanmugasundaram T.Acta Mater, 2011; 59: 1300
[24] Kim J H, Byun T S, Hoelzer D T, Park C H, Yeom J T, Hong J K.Mater Sci Eng, 2013; A559: 111
[25] Gerold V, Haberkorn H.Phys Status Solidi, 1966; 16: 675
[26] Zhang G M, Zhou Z J, Mo K, Miao Y B, Liu X, Almer J, Stubbins J F.J Nucl Mater, 2015; 467: 50
[27] Hirata A, Fujita T, Liu C T, Chen M W.Acta Mater, 2012; 60: 5686
[1] 陈瑞,许庆彦,柳百成. Al-Mg-Si合金中针棒状析出相时效析出动力学及强化模拟研究*[J]. 金属学报, 2016, 52(8): 987-999.
[2] 张可,雍岐龙,孙新军,李昭东,赵培林. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响*[J]. 金属学报, 2016, 52(5): 529-537.
[3] 顾伟,李静媛,王一德. 晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能的影响*[J]. 金属学报, 2016, 52(1): 51-59.
[4] 秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.
[5] 王小娜, 韩利战, 顾剑锋. NZ30K镁合金时效析出动力学与强化模型的研究*[J]. 金属学报, 2014, 50(3): 355-360.
[6] 张龙飞,燕平,赵京晨,韩凤奎,曾强. DD407单晶高温合金760℃屈服强度的LCP模型分析[J]. 金属学报, 2013, 29(4): 489-494.
[7] NIE Defu ZHAO Jie. 相续室温蠕变中屈服强度附近的应力应变行为[J]. 金属学报, 2009, 45(7): 840-843.
[8] 崔 航 陈怀宁 陈 静 黄春玲 吴昌忠. 球形压痕法评价材料屈服强度和应变硬化指数的有限元分析[J]. 金属学报, 2009, 45(2): 189-194.
[9] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.
[10] 肖甫 赵新青 徐惠彬 姜海昌 戎利建. (NiTi)50-0.5xNbx形状记忆合金的阻尼性能及力学性能[J]. 金属学报, 2009, 45(1): 18-24.
[11] 郭斌; 周健; 单德彬; 王慧敏 . 黄铜箔拉伸屈服强度的尺寸效应[J]. 金属学报, 2008, 44(4): 419-422 .
[12] 李芳; 陈业新; 万晓景; 王青江; 刘羽寅 . 氢对Ti-60钛合金显微组织和高温力学性能的影响[J]. 金属学报, 2006, 42(2): 143-146 .
[13] 覃; 明; 嵇宁; 李家宝; 马素媛; 陈昌荣; 宋忠孝; 何家文 . Cu附着膜的屈服强度与退火温度的关系[J]. 金属学报, 2004, 40(7): 716-720 .
[14] 张国君; 刘刚; 丁向东; 孙军; 陈康华 . 铝合金时效—屈服强度的实验与模型化研究[J]. 金属学报, 2003, 39(8): 803-808 .
[15] 李家宝; 覃明 . 弹簧钢60Si2Mn脱碳层软化的表征与研究[J]. 金属学报, 2000, 36(3): 287-290 .