Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 140-152    DOI: 10.11900/0412.1961.2016.00163
  本期目录 | 过刊浏览 |
活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析
周小卫1(),欧阳春1,乔岩欣1,沈以赴2
1 江苏科技大学材料科学与工程学院 镇江 212003
2 南京航空航天大学材料科学与技术学院 南京 210016
Analysis of Toughness and Strengthening Mechanisms forNi-CeO2 Nanocomposites Coated on the ActivatedSurface of Ti Substrate
Xiaowei ZHOU1(),Chun OUYANG1,Yanxin QIAO1,Yifu SHEN2
1 College of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
引用本文:

周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
Xiaowei ZHOU, Chun OUYANG, Yanxin QIAO, Yifu SHEN. Analysis of Toughness and Strengthening Mechanisms forNi-CeO2 Nanocomposites Coated on the ActivatedSurface of Ti Substrate[J]. Acta Metall Sin, 2017, 53(2): 140-152.

全文: PDF(13413 KB)   HTML
摘要: 

基于双脉冲电沉积技术在活性钛基(TA2)表面制备纳米晶Ni镀层。通过涂层附着力测试对比研究HF体系和DMF改良型活化液对TA2基体与表面镀层界面结合力的影响;借助TEM、FESEM和XRD等表征技术探讨添加纳米CeO2粒子前后对纳米电沉积层中Ni晶织构生长的影响;通过对纳米压痕及不同载荷下“十字交叉”型环形硬度压痕特征观察,分析复合CeO2粒子对Ni镀层表面强韧性的影响机制; 进一步探讨在高速干摩擦条件下复合CeO2粒子对Ni镀层抗磨损的作用。结果表明:在45+80 kHz交变频率超声振荡条件下,电解液中的活性CeO2粒子能有效吸附在优先生长Ni晶尖端,同时降低了Ni晶生长Gibbs自由能,并演变为Ni晶的催化形核中心来诱发异质形核; 纳米压痕测试表明:在500 g高载荷测试条件下,相对于纯Ni镀层试样的硬度压痕边缘的明显开裂和外拓迹象,Ni-CeO2复合镀层试样则表现为收敛性和连续完整的压痕边缘特征,显示出良好的强韧性。基于干摩擦过程中释放出大量的热,促使部分稀土CeO2相弥散或少量析出Ce溶质原子,具有对滑移的位错和晶界等缺陷产生钉扎拖拽作用,由此建立以Orowan位错绕过强化和位错塞积的机制模型;干摩擦过程促使部分富Ce磨损产物与NiO氧化膜机械混合来充当固体润滑剂,能起到良好的减摩作用,弥补了Ti表面耐磨性差等缺陷。

关键词 活性钛电沉积Ni-CeO2镀层组织性能富Ce润滑剂    
Abstract

With industrial developments of aerospace vehicles, marine devices, biomedical and bones, pure Ti and its alloys have gained a great deal of attraction due to their superior properties. Despite having promising properties, limitations of lower hardness, inferior weldability, and poor brittle fracture have restricted their applications. So the objective of this work was to make surface electrodeposition of nanocrystalline Ni coatings on the surface of TA2 substrate using pulsed electrodeposition. Scratch tests was used to compare how effects of two typical HF and DMF activating solutions on modifying interfacial adhesion between TA2 substrate and surface coatings. In order to disclose crystal growth of Ni coating without and with CeO2 addition, a variety of characterizations such as FESEM, TEM and XRD were employed. A novel decussating-type microhardness with different loading forces attached with nanoindentation tests was conducted to make a comparative study of toughness and strengthening mechanisms between surface coatings and the un-coated TA2 substrate. Besides, wear behaviors of specimens was carried out using the ball-disc dry sliding tests. Results indicated that the addition of CeO2 nanoparticles into electroplating solution has effectively modified textural growth of Ni grains. This result was attributed to the presence of nano-sized CeO2 particles that adsorbed onto the preferred locations of crystal Ni growth, leading into an increasing catalytic site of nucleation to reduce Gibbs energy for grain refinement. According to observations of edges for hardness indentations, a smaller size with convergence feature for Ni-CeO2 coatings was indicative of effects of CeO2 nanoparticles or its precipiated Ce solute atoms on alloying-dispersion strengthening for completing defective grain boundaries. While for the case of a divergency state of indentations edges within obviously spalling cracks, it exhibited poor surface toughness for pure nickel. Furthermore, An analytic modeling validated here was based on the by-passing Orowan for dislocations pile-up mechanisms, in which this was contributed to the co-existence of Ce-rich worn products and NiO passive film to be expected as solid lubricants and make the self-lubricating effect, thereby improving wear resistance of Ti alloys where subjected to harsh conditions.

Key wordsactive titanium    electroplating    Ni-CeO2 coating    structural property    Ce-rich lubricating phase
收稿日期: 2016-04-29     
基金资助:国家自然科学基金项目No.51605203, 江苏省自然科学基金项目No.BK20150467和江苏科技大学博士科研启动金项目No.1062921501
图1  在活化过程中TA2试样电位与浸泡时间之间的变化曲线
图2  TA2基体与Ni镀层结合界面的e-OM像
图3  添加CeO2纳米颗粒前后Ni 镀层表面的FESEM像
图4  添加CeO2纳米颗粒前后纳米晶Ni镀层中的晶界FESEM像
图5  添加纳米CeO2颗粒前后试样的XRD谱
图6  各试样纳米压痕的载荷-位移曲线
图7  不同载荷加载后残留在试样表面的硬度压痕的FESEM像
图8  各试样在500 g载荷作用下经“十字交叉法”环形加载后的硬度压痕的FESEM像
图9  各试样及其对应磨球的磨痕的FESEM像
图10  干摩擦前后纳米晶Ni-CeO2复合镀层的表面FESEM像
图11  干摩擦前后纳米晶Ni-CeO2复合镀层内部的TEM像
图12  富Ce固溶体相对晶界缺陷黏性钉扎的机理示意图
[1] Liu F C, Mao Y Q, Lin X, et al.Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding[J]. Opt. Laser Technol., 2016, 83: 140
[2] Xie L, Guo W H, Huo F J, et al.A new method for non-destructive stripping of coatings on titanium substrates[J]. Surf. Coat. Technol., 2016, 294: 1
[3] Liu X Y, Chu P K, Ding C X.Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Mater. Sci. Eng., 2004, R47: 49
[4] Wu S M.New technology and applications of electroplating on titanium alloys[J]. Aerosp. Shanghai, 1994, (3): 22
[4] (吴申敏. 钛合金电镀新工艺及其应用[J]. 上海航天, 1994, (3): 22)
[5] Liu H T, Wang L P, Deng C C.Friction and wear characteristics of nickel plating coating on titanium alloy surface[J]. Mater. Mech. Eng., 2013, 37(2): 46
[5] (刘洪涛, 王路平, 邓长城. 钛合金表面镀镍层的摩擦磨损特性[J]. 机械工程材料, 2013, 37(2): 46)
[6] Li M C, Tu Z M, Zhang J S, et al.Mechanism of direct metal plating on titanium[J]. Mater. Prot., 1991, 24(11): 12
[6] (李萌初, 屠振密, 张景双等. 钛上直接电镀机理的研究[J]. 材料保护, 1991, 24(11): 12)
[7] Ohtsu N, Komiya S, Kodama K.Effect of electrolytes on anodic oxidation of titanium for fabricating titanium dioxide photocatalyst[J]. Thin Solid Films, 2013, 534: 70
[8] Wang Y M, Lei T Q, Jiang B L, et al.Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution[J]. Appl. Surf. Sci., 2004, 233: 258
[9] Lin Y H, Lei Y P, Fu H G, et al.Laser in situ synthesized titanium diboride and nitinol reinforce titanium matrix composite coatings[J]. Acta Metall. Sin., 2014, 50: 1513
[9] (林英华, 雷永平, 符寒光等. 激光原位制备硼化钛与镍钛合金增强钛基复合涂层[J]. 金属学报, 2014, 50: 1513)
[10] Khor K A, Yip C S, Cheang P.Ti-6Al-4V/hydroxyapatite composite coatings prepared by thermal spray techniques[J]. J. Therm. Spray Technol., 1997, 6: 109
[11] Marin E, Offoiach R, Regis M, et al.Diffusive thermal treatments combined with PVD coatings for tribological protection of titanium alloys[J]. Mater. Des., 2016, 89: 314
[12] Li B, Shen Y F, Hu W Y, et al.Surface modification of Ti-6Al-4V alloy via friction-stir processing: Microstructure evolution and dry sliding wear performance[J]. Surf. Coat. Technol., 2014, 239: 160
[13] Chen C, Ding R D, Feng X M, et al.Fabrication of Ti-Cu-Al coatings with amorphous microstructure on Ti-6Al-4 V alloy substrate via high-energy mechanical alloying method[J]. Surf. Coat. Technol., 2013, 236: 485
[14] Li L L, He J, Yang X.Preparation of conversion coating on Ti-6Al-4V alloy in mixed solution of phytic acid and ammonium fluoride through chemical modification[J]. Appl. Surf. Sci., 2016, 371: 488
[15] Yuan H, Fu C Y.A potential-PH diagram for Ti-H2O system[J]. J. Sichuan Normal Univ.(Nat. Sci.), 1980, (2): 63
[15] (袁华, 付成玉. Ti-H2O体系电位-PH图[J]. 四川师范大学学报(自然科学版), 1980, (2): 63)
[16] Kong L B, Zhang T S, Ma J, et al.Mullite phase formation in oxide mixtures in the presence of Y2O3, La2O3?and CeO2[J]. J. Alloys Compd., 2004, 372: 290
[17] Boizumault-Moriceau P, Pennequin A, Grzybowska B, et al.Oxidative dehydrogenation of propane on Ni-Ce-O oxide: effect of the preparation method, effect of potassium addition and physical characterization[J]. Appl. Catal., 2003, 245A: 55
[18] Aruna S T, William Grip s V K, Rajam K S. Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties[J]. J. Alloys Compd., 2009, 468: 546
[19] Oliver W C, Pharr G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. J. Mater. Res., 1992, 7: 1564
[20] Zhou X W, Shen Y F.A comparative study of pure nickel and the Ni-CeO2 nanocrystalline coatings: microstructural evolution, oxidation behavior, and thermodynamic stability[J]. J. Mater. Sci., 2014, 49: 3755
[21] Zhou X W, Shen Y F.Surface morphologies, tribological properties, and formation mechanism of the Ni-CeO2?nanocrystalline coatings on the modified surface of TA2 substrate[J]. Surf. Coat. Technol., 2014, 249: 6
[22] Zhou X W, Shen Y F, Gu D D.Microstructure and high temperature oxidation resistance of nanocrystalline Ni-CeO2 composite coatings deposited by double-pulsed electro deposition[J]. Acta Metall. Sin., 2012, 48: 957
[22] (周小卫, 沈以赴, 顾冬冬. 双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能[J]. 金属学报, 2012, 48: 957)
[23] Zhou X W.Research on Nanocrystalline Ni coating reinforced with CeO2 nanoparticles on Ti-based surface by double pulse electrodeposition [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014
[23] (周小卫. 钛基金属表面双脉冲电沉积纳米CeO2增强镍基镀层的研究 [D]. 南京: 南京航空航天大学, 2014)
[24] Aruna S T,William Grips V K, Rajam K S. Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties[J]. J. Alloys Compd., 2009, 468: 546
[25] Kacher J, Elizaga P, House S D, et al.Thermal stability of Ni/NiO multilayers[J]. Mater. Sci. Eng., 2013, A568: 49
[26] Moon D P.The reactive element effect on the growth rate of nickel oxide scales at high temperature[J]. Oxid. Met., 1989, 32: 47
[27] Tudela I, Zhang Y, Pal M, et al.Ultrasound-assisted electrodeposition of thin nickel-based composite coatings with lubricant particles[J]. Surf. Coat. Technol., 2015, 276: 89
[28] Xue Y J, Si D H, Liu H B, et al.Effects of electrodeposition methods on friction and wear properties of Ni-CeO2 nanocomposite coatings[J]. Chin. J. Nonferrous Met., 2011, 21: 2157
[28] (薛玉君, 司东宏, 刘红兵等. 电沉积方式对Ni-CeO2纳米复合镀层摩擦磨损性能的影响[J]. 中国有色金属学报, 2011, 21: 2157)
[29] Xue Y J, Jia X Z, Zhou Y W, et al.Tribological performance of Ni-CeO2 composite coatings by electro deposition[J]. Surf. Coat. Technol., 2006, 200: 5677
[30] Zhang Z, Chen D L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites [J]. Mater. Sci. Eng., 2008,A483-484: 148
[31] Bober D B, Kumar M, Rupert T J.Nanocrystalline grain boundary engineering: Increasing Σ3 boundary fraction in pure Ni with thermomechanical treatments[J]. Acta Mater., 2015, 86: 43
[32] Aruna S T, Bindu C N, Ezhil Selvi V, et al.Synthesis and properties of electrodeposited Ni/ceria nanocomposite coatings[J]. Surf. Coat. Technol., 2006, 200: 6871
[1] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[2] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[3] 杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
[4] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[5] 高博文, 王美涵, 闫茂成, 赵洪涛, 魏英华, 雷浩. 2024铝合金表面PEDOT涂层的电化学制备及耐腐蚀性能[J]. 金属学报, 2020, 56(11): 1541-1550.
[6] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[7] 赵明雨,甄会娟,董志宏,杨秀英,彭晓. 新型耐磨耐高温氧化NiCrAlSiC复合涂层的制备及性能研究[J]. 金属学报, 2019, 55(7): 902-910.
[8] 赵婷婷, 康志新, 马夏雨. 一步电沉积法制备超疏水Cu网及其耐腐蚀和油水分离性能[J]. 金属学报, 2018, 54(1): 109-117.
[9] 钟晓聪, 蒋良兴, 吕晓军, 赖延清, 李劼, 刘业翔. 氯离子对Pb-Ag-RE合金阳极电化学行为的影响[J]. 金属学报, 2015, 51(3): 378-384.
[10] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[11] 单海权, 张跃飞, 毛圣成, 张泽. 电沉积纳米孪晶Ni中五次孪晶的电子显微分析*[J]. 金属学报, 2014, 50(3): 305-312.
[12] 李绪亮,张迎春,江凡,王莉莉,刘艳红,孙宁波. 电流密度对V-4Cr-4Ti合金基体上电沉积W涂层显微结构的影响[J]. 金属学报, 2013, 49(6): 745-750.
[13] 龙琼,钟云波,李甫,刘春梅,周俊峰,范丽君,李明杰. 稳恒磁场对Fe-Si复合电镀层形貌及Si含量的影响[J]. 金属学报, 2013, 49(10): 1201-1210.
[14] 周小卫 沈以赴 顾冬冬. 双脉冲电沉积纳米晶Ni-CeO2复合镀层的微观结构及其高温抗氧化性能[J]. 金属学报, 2012, 48(8): 957-964.
[15] 王祯 刘雪峰 谢建新. 连续柱状晶CuAlNi合金无模拉拔过程中的组织性能演变[J]. 金属学报, 2012, 48(7): 867-874.