Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 83-89    DOI: 10.11900/0412.1961.2016.00142
  本期目录 | 过刊浏览 |
Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究
白静1,2,3(),李泽2,万震2,赵骧1
1 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
2 东北大学秦皇岛分校资源与材料学院 秦皇岛 066004
3 河北省电介质与电解质功能材料实验室 秦皇岛 066004
A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys
Jing BAI1,2,3(),Ze LI2,Zhen WAN2,Xiang ZHAO1
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
3 Hebei Provincial Laboratory for Dielectric and Electrolyte Functional Materials, Qinhuangdao 066004, China
全文: PDF(1370 KB)   HTML
摘要: 

采用第一原理计算方法系统地研究了Cu含量对Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的影响。形成能的计算结果表明,在Ni2MnGa合金中,添加的第四组元Cu将优先占据Mn的亚晶格格点,从而为实验中的成分设计提供了理论依据。随着Cu含量的增加,铁磁性奥氏体的相稳定性逐渐减弱,而顺磁性奥氏体的相稳定性则逐渐增强,导致顺磁性奥氏体和铁磁性奥氏体的基态总能量之间的差值减小,这是此类合金Curie温度TC随Cu含量的增加而降低的本质原因。而实验上观察到的马氏体相变温度Tm随合金元素Cu含量的增加而升高的现象本质上是由于奥氏体与马氏体两相之间的能量差增大,从而提高了马氏体相变的驱动力所致。此外,Ni-Mn-Ga-Cu合金的磁性能随Cu含量的增加而减弱,并从电子态密度的角度阐释了磁性能降低的原因。

关键词 铁磁形状记忆合金第一性原理计算相稳定性磁性能    
Abstract

Ni-Mn-Ga ferromagnetic shape memory alloys (FSMAs) have attracted great attention for more than two decades, due to their large magnetic shape memory effect that originates from the rearrangement of martensitic variants under an external magnetic field. Over the past decade, accumulated knowledge on the properties of Ni-Mn-Ga Heusler alloys has allowed people to foresee the possibility of employing these alloys in device applications. However, the low operating temperatures and high brittleness remain the major drawbacks for the industrial application. Consequently, there has been growing interest in the modification of Ni-Mn-Ga alloys by adding a fourth element to increase transformation temperatures and to improve ductility. A recent study shows that the ductility has been effectively improved in Cu-doped Ni-Mn-Ga alloy under the situation of single phase via strengthening grain boundaries. In addition, the crystal structure, martensitic transformation, magnetic properties, high temperature magnetoplasticity and magnetocaloric effect have been reported in Ni-Mn-Ga-Cu alloys. Experimental results have shown that the martensitic transformation temperature (Tm) is drastically increased and the Curie temperature (TC) slightly decreased with Cu addition. As already known, the alloying elements affect both the crystal and electronic structures and hence the stability of austenite and martensite phases. Therefore, knowledge of the effects of Cu addition is of great importance to understand the composition dependence of Tm and TC. First-principles calculation results on Ni8Mn4-xGa4Cux (x=0, 0.5, 1, 1.5 and 2) ferromagnetic shape memory alloys of this research draw following conclusions. The added Cu atom preferentially occupies the Mn site. The formation energy results indicate that ferromagnetic austenite is more stable than the paramagnetic one. The ferromagnetic state becomes instable and paramagnetic state becomes more stable when Mn is gradual substituted by Cu. The evaluated TC decreases with increasing Cu content that is derived from the decrease of total energy difference between the paramagnetic and the ferromagnetic austenite. The experimentally observed decrease of Tm is originated from the decrease of total energy difference between the austenite and the non-modulated martensite. The difference between the up and down DOS is reduced with the increasing Cu content that gives rise to the decrease of the total magnetic moments. The purpose of this work is to explore the influence of Cu addition on crystal structure, Tm, TC and electronic structures of Ni8Mn4-xGa4Cux (x=0, 0.5, 1, 1.5 and 2) alloys by first-principles calculations, aiming at providing theoretical data and directions for developing high performance FSMAs.

Key wordsferromagnetic shape memory alloy,    first-principle calculation,    phase stability,    magnetic property
收稿日期: 2016-04-18      出版日期: 2016-10-25
基金资助:资助项目 国家自然科学基金项目Nos.51301036和51431005,国家高技术研究发展计划项目No.2015AA034101,中央高校基本科研业务费专项资金项目No.N130523001及河北省自然科学基金项目No.E2013501089资助

引用本文:

白静,李泽,万震,赵骧. Ni-Mn-Ga-Cu铁磁形状记忆合金的晶体结构、相稳定性和磁性能的第一性原理研究[J]. 金属学报, 2017, 53(1): 83-89.
Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys. Acta Metall Sin, 2017, 53(1): 83-89.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00142      或      http://www.ams.org.cn/CN/Y2017/V53/I1/83

图1  Ni2MnGa的晶体结构示意图
图2  Ni8Mn4-xGa4Cux (x=0、0.5、1、1.5和2)合金顺磁性奥氏体相和铁磁性奥氏体相的形成能
x
Etot / eV ΔE1 / eV
TC / K
ΔE2 / eV
Paramagnetic austenite Ferromagnetic austenite Non-modulated martensite
0 -91.2143 -95.4713 -95.5339 4.2570 365 0.0626
0.5 -89.1821 -92.8067 -92.8845 3.6247 311 0.0778
1 -87.1279 -90.1651 -90.2773 3.0372 260 0.1122
1.5 -85.0584 -87.5453 -87.6700 2.4869 213 0.1247
2 -82.9336 -84.9459 -85.1345 2.0123 173 0.1886
表2  Ni8Mn4-xGa4Cux (x=0、0.5、1、1.5和2)合金顺磁和铁磁奥氏体及非调制马氏体的基态总能量
图3  电子自旋总态密度图
x Phase a / nm c / nm c/a Magnetic moment
10-23 Am2
0 Cub. 0.5794 (5.823[26]) 3.7319 (3.8673[31], 3.9600[32])
Tet. 0.3845 (3.852[30]) 0.6568 (6.580[30]) 1.708 (1.708[30]) 3.7625
0.5 Cub. 0.5787 3.2895
Tet. 0.3821 0.6641 1.738 3.3071
1 Cub. 0.5782 2.8824
Tet. 0.3814 0.6623 1.736 2.8694
1.5 Cub. 0.5775 2.4418
Tet. 0.3803 0.6648 1.748 2.3843
2 Cub. 0.5764 2.0171
Tet. 0.3782 0.6672 1.764 1.8585
表1  Ni8Mn4-xGa4Cux (x=0、0.5、1、1.5和2)合金立方奥氏体和四方非调制马氏体的平衡晶格常数及总磁矩
图4  Ni8Mn3Ga4Cu1 (X1)合金的自旋分波态密度图
[1] Sozinov A, Likhachev A A, Lanska N, et al.Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase[J]. Appl. Phys. Lett., 2002, 80: 1746
[2] Henry C P, Bono D, Feuchtwanger J, et al.AC field-induced actuation of single crystal Ni-Mn-Ga[J]. J. Appl. Phys., 2002, 91: 7810
[3] Gao L, Cai W, Liu A L, et al.Martensitic transformation and mechanical properties of polycrystalline Ni50Mn29Ga21-xGdx ferromagnetic shape memory alloys[J]. J. Alloys Compd., 2006, 425: 314
[4] Guo S H, Zhang Y H, Zhao Z Q, et al.Effects of Sm on phase transformation in Ni-Mn-Ga alloys[J]. J. Rare Earth, 2004, 22: 875
[5] Tsuchiya K, Tsutsumi A, Ohtsuka H, et al.Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements[J]. Mater. Sci. Eng., 2004, A378: 370
[6] Wang H B, Chen F, Gao Z Y, et al. Effect of Fe content on fracture behavior of Ni-Mn-Fe-Ga ferromagnetic shape memory alloys [J]. Mater. Sci. Eng., 2006, A438-440: 990
[7] Yang S Y, Liu Y, Wang C P, et al.The mechanism clarification of Ni-Mn-Fe-Ga alloys with excellent and stable functional properties[J]. J. Alloys Compd., 2013, 560: 84
[8] Cong D Y, Wang S, Wang Y D, et al.Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys[J]. Mater. Sci. Eng., 2008, A473: 213
[9] Li Y Y, Wang J M, Jiang C B.Study of Ni-Mn-Ga-Cu as single-phase wide-hysteresis shape memory alloys[J]. Mater. Sci. Eng., 2011, A528: 6907
[10] Stadler S, Khan M, Mitchell J, et al.Magnetocaloric properties of Ni2Mn1-xCuxGa[J]. Appl. Phys. Lett., 2006, 88: 192511
[11] Glavatskyy I, Glavatska N, Dobrinsky A, et al.Crystal structure and high-temperature magnetoplasticity in the new Ni-Mn-Ga-Cu magnetic shape memory alloys[J]. Scr. Mater., 2007, 56: 565
[12] Duan J F, Long Y, Bao B, et al.Experimental and theoretical investigations of the magnetocaloric effect of Ni2.15Mn0.85-xCuxGa (x=0.05, 0.07) alloys[J]. J. App. Phys., 2008, 103: 063911
[13] Jiang C B, Wang J M, Li P P, et al.Search for transformation from paramagnetic martensite to ferromagnetic austenite: NiMnGaCu alloys[J]. Appl. Phys. Lett., 2009, 95: 012501
[14] Roy S, Blackburn E, Valvidares S M, et al.Delocalization and hybridization enhance the magnetocaloric effect in Cu-doped Ni2MnGa[J]. Phys. Rev., 2009, 79B: 235127
[15] Li C M, Luo H B, Hu Q M, et al.Site preference and elastic properties of Fe-, Co-, and Cu-doped Ni2MnGa shape memory alloys from first principles[J]. Phys. Rev., 2011, 84B: 024206
[16] Sokolovskiy V, Buchelnikov V, Skokov K, et al.Magnetocaloric and magnetic properties of Ni2Mn1-xCuxGa Heusler alloys: an insight from the direct measurements and ab initio and Monte Carlo calculations[J]. J. Appl. Phys., 2013, 114: 183913
[17] Li G J, Liu E K, Zhang H G, et al.Role of covalent hybridization in the martensitic structure and magnetic properties of shape-memory alloys: the case of Ni50Mn5+xGa35-xCu10[J]. Appl. Phys. Lett., 2013, 102: 062407
[18] Zeleny M, Sozinov A, Straka L, et al.First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path[J]. Phys. Rev., 2014, 89B: 184103
[19] Li Z B, Zou N F, Sánchez-Valdés C F, et al. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25-xGa25Cux (0≤x≤7) melt-spun ribbons[J]. J. Phys., 2016, 49D: 025002
[20] Hafner J.Atomic-scale computational materials science[J]. Acta Mater., 2000, 48: 71
[21] Kresse G, Furthmüller J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169
[22] Bl?chl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[23] Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[24] Perdew J P, Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev., 1992, 45B: 13244
[25] Monkhorst H J, Pack J D.Special points for Brillouin-zone integrations[J]. Phys. Rev., 1976, 13B: 5188
[26] Cong D Y, Zetterstr?m P, Wang Y D, et al.Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20 K to 473 K[J]. Appl. Phys. Lett., 2005, 87: 111906
[27] Wu S K, Yang S T.Effect of composition on transformation temperatures of N-Mn-Ga shape memory alloys[J]. Mater. Lett., 2003, 57: 4291
[28] Bai J, Raulot J M, Zhang Y D, et al.Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, Co) from first-principles calculations[J]. J. Appl. Phys., 2011, 109: 014908
[29] Bai J, Raulot J M, Zhang Y D, et al.Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation[J]. J. Appl. Phys., 2010, 108: 064904
[30] Brown P J, Crangle J, Kanomata T, et al.The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa[J]. J. Phys.: Condens. Matter, 2002, 14: 10159
[31] Ayuela A, Enkovaara J, Nieminen R M.Ab initio study of tetragonal variants in Ni2MnGa alloy[J]. J. Phys.: Condens. Matter, 2002, 14: 5325
[32] Bungaro C, Rabe K M, Corso A D.First-principles study of lattice instabilities in ferromagnetic Ni2MnGa[J]. Phys. Rev., 2003, 68B: 134104
[33] Chakrabarti A, Biswas C, Banik S, et al.Influence of Ni doping on the electronic structure of Ni2MnGa[J]. Phys. Rev., 2005, 72B: 073103
[34] Fujii S, Ishida S, Asano S.Electronic structure and lattice transformation in Ni2MnGa and Co2NbSn[J]. J. Phys. Soc. Jpn., 1989, 58: 3657
[35] Velikokhatnyi O I, Nuamov I I.Electronic structure and instability of Ni2MnGa[J]. Phys. Solid State, 1999, 41: 617
[36] Chen J, Li Y, Shang J X, et al.First principles calculations on martensitic transformation and phase instability of Ni-Mn-Ga high temperature shape memory alloys[J]. Appl. Phys. Lett., 2006, 89: 231921
[37] Bl?chl P E, Jepsen O, Andersen O K.Improved tetrahedron method for Brillouin-zone integrations[J]. Phys. Rev., 1994, 49B: 16223
[1] 白静, 石少锋, 王锦龙, 王帅, 赵骧. Ni-Mn-Ga-Ti铁磁形状记忆合金的相稳定性和磁性能的第一性原理计算[J]. 金属学报, 2019, 55(3): 369-375.
[2] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[3] 周刚, 叶荔华, 王皞, 徐东生, 孟长功, 杨锐. 六角结构金属中基面/柱面取向转变的孪晶路径及合金化效应的第一性原理研究[J]. 金属学报, 2018, 54(4): 603-612.
[4] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[5] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[6] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[7] 马殿国,王英敏,李艳辉,张伟. Co含量对熔体快淬Fe55-xCoxPt15B30合金的组织结构与磁性能的影响[J]. 金属学报, 2017, 53(5): 609-614.
[8] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[9] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[10] 杜娇娇,李国建,王强,马永会,王慧敏,李萌萌. 强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*[J]. 金属学报, 2015, 51(7): 799-806.
[11] 张旭东,王绍青. Al3Sc和Al3Zr金属间化合物热力学性质的第一性原理计算[J]. 金属学报, 2013, 29(4): 501-505.
[12] 晁月盛,王莉,张艳辉,朱涵娴,罗丽平. 脉冲磁场处理Fe52Co34Hf7B6Cu1非晶的低温真空退火效应[J]. 金属学报, 2012, 48(6): 749-752.
[13] 刘荣明,岳明,张东涛,刘卫强,张久兴. SmCo5纳米颗粒和纳米薄片的制备、结构和磁性能[J]. 金属学报, 2012, 48(4): 475-479.
[14] 李定朋 宋晓艳 张哲旭 卢年端 乔印凯 刘雪梅. 单相Sm5Co2纳米晶合金的制备及其性能研究[J]. 金属学报, 2012, 48(10): 1248-1252.
[15] 唐瑞鹤 杨志刚 张弛 杨白 刘晓芳 于荣海. Co-C纳米复合薄膜的微结构、磁性能和磁输运特性[J]. 金属学报, 2011, 47(4): 469-474.