Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 47-56    DOI: 10.11900/0412.1961.2016.00136
  本期目录 | 过刊浏览 |
Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响
杨忠波,赵文金(),程竹青,邱军,张海,卓洪
中国核动力研究设计院反应堆燃料及材料重点实验室 成都 610213
Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys
Zhongbo YANG,Wenjin ZHAO(),Zhuqing CHENG,Jun QIU,Hai ZHANG,Hong ZHUO
Reactor Fuel and Material Key Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
引用本文:

杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
Zhongbo YANG, Wenjin ZHAO, Zhuqing CHENG, Jun QIU, Hai ZHANG, Hong ZHUO. Effect of Nb Content on the Corrosion Resistance of Zr-xNb-0.4Sn-0.3Fe Alloys[J]. Acta Metall Sin, 2017, 53(1): 47-56.

全文: PDF(6836 KB)   HTML
摘要: 

用高压釜腐蚀实验研究了不同Nb含量的Zr-xNb-0.4Sn-0.3Fe (x=0~1,质量分数,%)合金在360 ℃、18.6 MPa纯水,360 ℃、18.6 MPa、0.01 mol/L LiOH水溶液以及400 ℃、10.3 MPa过热蒸汽中的耐腐蚀性能,用TEM和SEM分析了合金腐蚀前后的显微组织。结果表明,x从0增加至1时,合金在纯水和过热蒸汽中的腐蚀增重逐渐增加,但在LiOH水溶液中的腐蚀增重减少;Nb具有细化合金再结晶晶粒作用,随着Nb含量的增加,合金中第二相直径相接近,但第二相的面密度和Nb/Fe比增大,当x≤0.2时,第二相主要为不含Nb的ZrFe或含少量Nb的ZrNbFe相,0.3≤x≤1时,主要为ZrNbFe相;合金腐蚀速率越高,氧化膜断面平行裂纹越多,基体/氧化膜界面处呈“菜花”状凸起越严重。探论了Nb含量对Zr-xNb-0.4Sn-0.3Fe耐腐蚀性能影响的机理,认为含Nb第二相的析出量是引起合金耐腐蚀性能差别的主要原因。

关键词 Zr-xNb-0.4Sn-0.3Fe合金腐蚀显微组织氧化膜    
Abstract

Zr-Sn-Nb-Fe alloy is one of the high performance zirconium alloys used as the fuel cladding materials for high burnup fuel elements. The corrosion behavior of zirconium alloys were affected by the alloying element, the microstructure and fabricating process. To better understand the effect of Nb on the corrosion behavior of Zr-Sn-Nb-Fe alloy, Zr-xNb-0.4Sn-0.3Fe (x=0~1, mass fraction, %) sheets were prepared by thermo-mechanical processing and tested in static autoclave in 360 ℃, 18.6 MPa pure water, 360 ℃, 18.6 MPa, 0.01 mol/L LiOH aqueous solution, and 400 ℃, 10.3 MPa superheat steam. The characteristics of the microstructure were analyzed by TEM and SEM. It was shown that the corrosion weight gain of specimens was increased when x increaseed from 0 to 1 in pure water and steam. However, it was found that the corrosion weight gain reduced in LiOH aqueous solution as Nb content was increased. The microstructural characteristic indicated the addition of Nb has the effect of refining recrystallization grain of Zr-xNb-0.4Sn-0.3Fe alloy. The mean size of the precipitates in alloy were almost the same even though the Nb was considerably changed, but the area fraction of precipitates and mass ratio of Nb/Fe in precipitates of alloy were increased with the Nb content increasing when all the samples heat-treated in the same condition. The ZrFe or ZrNbFe precipitate of including small amounts of Nb was mainly formed when x was 0.2 or less, and the ZrNbFe precipitate was mainly found when the content of Nb was higher. With the increasing of corrosion rate, there are more cracks in the fracture surface of the oxide films and the size of “Cauliflower-like” structure grows bigger. It was concluded that the contents of Nb in ZrNbFe precipitates will be responsible for the difference of corrosion resistance for Zr-xNb-0.4Sn-0.3Fe alloy.

Key wordsZr-xNb-0.4Sn-0.3Fe alloy,    corrosion,    microstructure,    oxide film
收稿日期: 2016-04-13     
基金资助:资助项目 中国核工业集团重点专项项目No.[2014]114
Alloy Nb Sn Fe O N Zr
Zr-0Nb-0.4Sn-0.3Fe - 0.38 0.29 0.08 <0.006 Bal.
Zr-0.2Nb-0.4Sn-0.3Fe 0.18 0.41 0.30 0.08 <0.006 Bal.
Zr-0.3Nb-0.4Sn-0.3Fe 0.28 0.41 0.31 0.08 <0.006 Bal.
Zr-0.65Nb-0.4Sn-0.3Fe 0.63 0.42 0.29 0.08 <0.006 Bal.
Zr-1Nb-0.4Sn-0.3Fe 0.99 0.43 0.29 0.08 <0.006 Bal.
表1  合金的化学成分
图1  Zr-xNb-0.4Sn-0.3Fe合金在不同水化学介质中的腐蚀动力学曲线
图2  腐蚀前Zr-xNb-0.4Sn-0.3Fe合金的TEM像
图3  Zr-xNb-0.4Sn-0.3Fe合金中第二相统计结果
图4  Zr-xNb-0.4Sn -0.3Fe合金第二相中的Nb和Fe含量关系
图5  Zr-xNb-0.4Sn-0.3Fe合金在纯水中腐蚀340 d后氧化膜断口形貌
图6  Zr-xNb-0.4Sn-0.3Fe合金在过热蒸汽中腐蚀转折后氧化膜断口形貌
图7  Zr-xNb-0.4Sn-0.3Fe合金在LiOH水溶液中加速腐蚀前后氧化膜断口形貌
图8  Zr-xNb-0.4Sn-0.3Fe合金经不同水化学介质腐蚀后的氧化膜/基体界面处的形貌
[1] Xie X F, Zhang J L, Zhu L, et al.Study on the corrosion resistance of Zr-0.7Sn-0.35Nb-0.3Fe-xGe alloy in lithiated water at high temperature under high pressure[J]. Acta Metall. Sin., 2012, 48: 1487
[1] (谢兴飞, 张金龙, 朱莉等. Zr-0.7Sn-0.35Nb-0.3Fe-xGe合金在高温高压LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2012, 48: 1487)
[2] Pan G, Garde A M, Atwood A R.Performance and property evaluation of high-burnup optimized ZIRLOTM cladding [A]. Zirconium in the Nuclear Industry: 17th International Symposium[C]. West Conshohocken, PA: ASTM International, 2015: 607
[3] Shishov V N, Markelov V A, Nikulina A V, et al.Corrosion, dimensional stability and microstructure of VVER-1000 E635 alloy FA components at burnups up to 72 MW day/kgU [A]. Zirconium in the Nuclear Industry: 17th International Symposium[C]. West Conshohocken, PA: ASTM International, 2015: 628
[4] Zhou B X, Yao M Y, Li Z K, et al.Optimization of N18 zirconium alloy for fuel cladding of water reactors[J]. J. Mater. Sci. Technol., 2012, 28: 606
[5] Garde A M, Comstock R J, Pan G, et al.Advanced zirconium alloy for PWR application [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 784
[6] Kim H G, Jeong Y H, Kim T H.Effect of isothermal annealing on the corrosion behavior of Zr-xNb alloys[J]. J. Nucl. Mater., 2004, 326: 125
[7] Kim H G, Park J Y, Jeong Y H.Ex-reactor corrosion and oxide characteristics of Zr-Nb-Fe alloys with the Nb/Fe ratio[J]. J. Nucl. Mater., 2005, 345: 1
[8] Wei J, Frankel P, Polatidis E, et al.The effect of Sn on autoclave corrosion performance and corrosion mechanisms in Zr-Sn-Nb alloys[J]. Acta Mater., 2013, 61: 4200
[9] Müller S, Lanzani L.Corrosion of Zr-1Nb and Zr-2.5Nb in 0.1 M LiOH at 343 ℃[J]. Proc. Mater. Sci., 2015, 8: 46
[10] Zhang H X, Li Z K, Zhou L, et al.Effects of structure and internal stresses in oxide films on corrosion mechanism of new zirconium alloy[J]. Acta Metall. Sin., 2014, 50: 1529
[10] (章海霞, 李中奎, 周廉等. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50: 1529)
[11] Wei T G, Long C S, Miao Z, et al.Corrosion behavior of Zr-0.4Fe-1.0Cr-xMo alloys in 500 ℃ and 10.3 MPa steam[J]. Acta Metall. Sin., 2013, 49: 717(韦天国, 龙冲生, 苗志等. Zr-0.4Fe-1.0Cr-xMo合金在500 ℃和10.3 MPa水蒸汽中的腐蚀行为 [J]. 金属学报, 2013, 49: 717)
[12] Platt P, Frankel P, Gass M, el al. Critical assessment of finite element analysis applied to metal-oxide interface roughness in oxidising zirconium alloys[J]. J. Nucl. Mater., 2015, 464: 313
[13] Platt P, Polatidis E, Frankel P, et al.A study into stress relaxation in oxides formed on zirconium alloys[J]. J. Nucl. Mater., 2015, 456: 415
[14] Shishov V N.The evolution of microstructure and deformation stability in Zr-Nb-(Sn, Fe) alloys under neutron irradiation [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 37
[15] Garner A, Gholinia A, Frankel P, et al.The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy[J]. Acta Mater., 2014, 80: 159
[16] Yang Z B, Zhao W J, Miao Z, et al.Corrosion behavior of Zr-XSn-1Nb-0.3Fe(X=0~1.5) alloys[J]. Rare Met. Mater. Eng., 2015, 44: 1129
[16] (杨忠波, 赵文金, 苗志等. Zr-XSn-1Nb-0.3Fe(X=0~1.5)合金的腐蚀行为研究[J]. 稀有金属材料与工程, 2015, 44: 1129)
[17] Guo X C, Luan B F, Chen J W, et al.Distribution characteristics of precipitation of N18 zirconium alloy[J]. Rare Met. Mater. Eng., 2011, 40: 813
[17] (过锡川, 栾佰峰, 陈建伟等. N18锆合金沉淀相分布特征的研究[J]. 稀有金属材料与工程, 2011, 40: 813)
[18] Preuss M, Frankel P, Lozano-Perez S, et al.Studies regarding corrosion mechanisms in zirconium alloys [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 649
[19] Li S L, Yao M Y, Zhang X, et al.Effect of adding Cu on the corrosion resistance of M5 alloy in superheated steam at 500 ℃[J]. Acta Metall. Sin., 2011, 47: 163
[19] (李士炉, 姚美意, 张欣等. 添加Cu对M5合金在500 ℃过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2011, 47: 163)
[20] Mardon J P, Charquet D, Senevat J.Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy [A]. Zirconium in the Nuclear Industry: 12th International Symposium[C]. West Conshohocken, PA: ASTM International, 2000: 505
[21] Couet A, Motta A T, Comstock R J.Effect of alloying elements on hydrogen pickup in zirconium alloys [A]. Zirconium in the Nuclear Industry: 17th International Symposium[C]. West Conshohocken, PA: ASTM International, 2015: 479
[22] Chabretou V, Hoffmann P B, Trapp-Pritsching S, et al.Ultra low tin quaternary alloys PWR performance-impact of tin content on corrosion resistance, irradiation growth, and mechanical properties [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 801
[23] Wikmark G, Rudling P, Lehtinen B, et al.The importance of oxide morphology for the oxidation rate of zirconium alloys [A]. Zirconium in the Nuclear Industry: 11th International Symposium[C]. West Conshohocken, PA: ASTM International, 1996: 55
[24] Yao M Y, Wang J H, Peng J C, et al.Study on the role of second phase particles in hydrogen uptake behavior of zirconium alloys [A]. Zirconium in the Nuclear Industry: 16th International Symposium[C]. West Conshohocken, PA: ASTM International, 2011: 466
[25] Zhang W P, Yao M Y, Zhu L, et al.Corrosion behavior of Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr-xBi alloys in superheated steam at 400 ℃/10.3 MPa[J]. Corros. Prot., 2013, 34: 463
[25] (张伟鹏, 姚美意, 朱莉等. Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr-xBi合金在400 ℃过热蒸汽中的腐蚀行为[J]. 腐蚀与防护, 2013, 34: 463)
[26] Yao M Y, Zhang Y, Li S L, et al.Effect of Cu content on the corrosion resistance of Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu alloy in superheated steam at 500 ℃[J]. Acta Metall. Sin., 2011, 47: 872
[26] (姚美意, 张宇, 李士炉等. Cu含量对Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu合金在500 ℃过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2011, 47: 872)
[27] Frankel P G, Wei J, Fruncis E M, et al.Effect of Sn on corrosion mechanisms in advanced Zr-cladding for pressurised water reactors [A]. Zirconium in the Nuclear Industry: 17th International Symposium[C]. West Conshohocken. PA: ASTM International, 2015: 404
[28] Platt P, Frankel P, Gass M, et al.Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys[J]. J. Nucl. Mater., 2014, 454: 290
[29] Yan K P, Chen K M.The Processing Equipment Corrosion and Protection [M]. 2nd Ed., Beijing: Chemical Industry Press, 2009: 48
[29] (闫康平, 陈匡民. 过程装备腐蚀与防护 [M]. 第二版. 北京: 化学工业出版社, 2009: 48)
[30] Zhang J L, Xie X F, Yao M Y, et al.Effect of Ge addition on corrosion performance of Zr-4 alloy in lithiated solution[J]. Chin. J. Nonferrous Met., 2013, 23: 1542
[30] (张金龙, 谢兴飞, 姚美意等. Ge含量对Zr-4合金在LiOH水溶液中耐腐蚀性能的影响[J]. 中国有色金属学报, 2013, 23: 1542)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[5] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[6] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[7] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[8] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[9] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[10] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[13] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.