Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 107-113    DOI: 10.11900/0412.1961.2016.00134
  本期目录 | 过刊浏览 |
强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究
闫亚琼,罗晋如(),张济山,庄林忠
北京科技大学新金属材料国家重点实验室 北京 100083
Study on the Microstructural Evolution and Mechanical Properties Control of a Strong Textured AZ31 Magnesium Alloy Sheet During Cryorolling
Yaqiong YAN,Jinru LUO(),Jishan ZHANG,Linzhong ZHUANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(5483 KB)   HTML
摘要: 

取初始织构为c轴与板面法向垂直的强织构AZ31镁合金板材为初始样品,经液氮温度深低温轧制多道次至不同变形量,研究所得轧制板材的显微组织与织构演变,及其对轧制力学性能的影响。利用SEM、EBSD和XRD表征分析了轧制板材的显微组织和织构,应用准静态单轴拉伸实验分别测试了深低温轧制板材沿轧向(RD)和横向(TD)的室温力学性能。研究表明,{101?2}拉伸孪晶是深低温轧制强织构AZ31镁合金板材中的主导孪晶类型,其对轧制板材的微观组织和织构影响较为显著。轧制变形后,大量的拉伸孪晶晶界不但对晶粒起到了分割碎化作用,并且由于孪晶对取向的剧烈改变,使得板材在轧制变形后c轴平行于ND的织构组分加强。深冷轧制板材的强度有所提高,但是延伸率却急剧下降,沿着RD方向的强度要高于TD方向的强度。

关键词 AZ31镁合金深低温轧制织构孪生显微组织    
Abstract

A strongly basal textured AZ31 magnesium alloy sheet with the normal direction (ND) perpendicular to the c-axis has been cryorolled at the liquid-nitrogen temperature to the strain of different amount to analyze the influence of cryogenic rolling temperature. The microstructure and texture of the cryorolled samples have been investigated by using SEM, EBSD and XRD. And the mechanical properties of the cryorolled sheets have also been tested under quasi-static uni-axial tension at the ambient temperature along the rolling direction (RD) and transverse direction (TD) respectively. The microstructural and textual evolutions of the strongly basal textured AZ31 magnesium alloy sheets during cryorolling and the relationship between mechanical properties and the microstructural and textural evolutions of cryorolled samples has also been discussed in this work. The results show that a lot of twins have been observed in cryorolled sheets, and they were found to be {101?2} tension twins. {101?2} tension twins were the dominant twinning type of the AZ31 magnesium alloy sheet during cryogenic rolling. With the increase of cryogenic rolling pass, new texture component with the c-axis paralleled to the normal direction (ND) was strengthened and the breadth of {101?2} tension twins was also increased. Grains were separated by the twin grain boundaries after cryorolling. The mechanical test results show that the strength of the sheets increased while the ductility decreased after cryogenic rolling. The strength of the sheets along RD was higher than that along TD.

Key wordsAZ31 magnesium alloy    cryogenic rolling    texture    twining    microstructure
收稿日期: 2016-04-12      出版日期: 2016-10-28
基金资助:资助项目 国家自然科学基金项目No.51401019,中国博士后科学基金项目No.2014M550612,中央高校基本科研业务费项目Nos.FRF-TP-14-048A1和FRF-TP-15-0055A2以及北京市教委共建项目No.FRF-SD-13-005B

引用本文:

闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
Yaqiong YAN,Jinru LUO,Jishan ZHANG,Linzhong ZHUANG. Study on the Microstructural Evolution and Mechanical Properties Control of a Strong Textured AZ31 Magnesium Alloy Sheet During Cryorolling. Acta Metall Sin, 2017, 53(1): 107-113.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00134      或      http://www.ams.org.cn/CN/Y2017/V53/I1/107

图1  初始AZ31板材的显微组织和极图
图2  深低温轧制后的样品织构
图3  深低温轧制后样品的宏观组织
图4  深低温轧制后样品的显微组织
图5  初始样品及深低温轧制样品的EBSD像
图6  初始样品及深低温轧制样品的取向差角分布
图7  拉伸样尺寸
图8  初始样品及深低温轧制样品沿RD和TD方向的真应力-真应变曲线
图9  初始样品及深低温轧制样品沿RD和TD方向的加工硬化曲线
[1] Easton M, Beer A, Barnett M, et al.Magnesium alloy applications in automotive structures[J]. JOM, 2008, 60(11): 57
[2] Mordike B L, Ebert T.Magnesium: properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[3] Bamberger M, Dehm G.Trends in the development of new Mg alloys[J]. Annu. Rev. Mater. Res., 2008, 38: 505
[4] Chino Y, Kimura K, Hakamada M, et al.Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy[J]. Mater. Sci. Eng., 2008, A485: 311
[5] Al-Samman T.Comparative study of the deformation behavior of hexagonal magnesium-lithium alloys and a conventional magnesium AZ31 alloy[J]. Acta Mater., 2009, 57: 2229
[6] Chino Y, Kimura K, Mabuchi M.Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloy sheets[J]. Acta Mater., 2009, 57: 1476
[7] Jiang L, Jonas J J, Luo A A, et al.[J]. Mater. Sci. Eng., 2007, A445-446: 302
[8] Yi S, Bohlen J, Heinemann F, et al.Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets[J]. Acta Mater., 2010, 58: 592
[9] Wang Y N, Huang J C.The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy[J]. Acta Mater., 2007, 55: 897
[10] Barnett M R, Keshavarz Z, Beer A G, et al.Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Mater., 2004, 52: 5093
[11] Lv F, Yang F, Duan Q Q, et al.Fatigue properties of rolled magnesium alloy (AZ31) sheet: influence of specimen orientation[J]. Int. J. Fatigue, 2011, 33: 672
[12] Huang X S, Suzuki K, Chino Y.Influences of initial texture on microstructure and stretch formability of Mg-3Al-1Zn alloy sheet obtained by a combination of high temperature and subsequent warm rolling[J]. Scr. Mater., 2010, 63: 395
[13] Luo J R, Godfrey A, Liu W, et al.Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling[J]. Acta Mater., 2012, 60: 1986
[14] Lee Y B, Shin D H, Park K T, et al.Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature[J]. Scr. Mater., 2004, 51: 355
[15] Rangaraju N, Raghuram T, Krishna B V, et al.Effect of cryo-rolling and annealing on microstructure and properties of commercially pure aluminium[J]. Mater. Sci. Eng., 2005, A398: 246
[16] Lee T R, Chang C P, Kao P W.The tensile behavior and deformation microstructure of cryo-rolled and annealed pure nickel[J]. Mater. Sci. Eng., 2005, A408: 131
[17] Nagarjuna S, Babu U C, Ghosal P.Effect of cryo-rolling on age hardening of Cu-1.5Ti alloy[J]. Mater. Sci. Eng., 2008, A491: 331
[18] Wang Y M, Chen M W, Zhou F H, et al.High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419: 912
[19] Al-Samman T, Gottstein G.Influence of strain path change on the rolling behavior of twin roll cast magnesium alloy[J]. Scr. Mater., 2008, 59: 760
[20] Beausir B, Biswas S, Kim D I, et al.Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling[J]. Acta Mater., 2009, 57: 5061
[21] Pérez-Prado M T, del Valle J A, Contreras J M, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy[J]. Scr. Mater., 2004, 50: 661
[22] Liu Q.Research progress on plastic deformation mechanism of Mg alloys[J]. Acta Metall. Sin., 2010, 46: 1458
[22] (刘庆. 镁合金塑性变形机理研究进展[J]. 金属学报, 2010, 46: 1458)
[23] Chapuis A, Driver J H.Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals[J]. Acta Mater., 2011, 59: 1986
[24] Hutchinson W B, Barnett M R.Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals[J]. Scr. Mater., 2010, 63: 737
[25] Luo J R, Liu Q, Liu W, et al.[J]. Acta Metall. Sin., 2012, 48: 717
[25] (罗晋如, 刘庆, 刘伟等. [J]. 金属学报, 2012, 48: 717)
[26] Luo J R, Liu Q, Liu W, et al.[J]. Acta Metall. Sin., 2011, 47: 1567
[26] (罗晋如, 刘庆, 刘伟等. [J]. 金属学报, 2011, 47: 1567)
[27] Yoshinaga H, Obara T, Morozumi S.Twinning deformation in magnesium compressed along the c-axis[J]. Mater. Sci. Eng., 1973, 12: 255
[28] Read-Hill R E, Robertson W D. Additional modes of deformation twinning in magnesium[J]. Acta Metall., 1957, 5: 717
[29] Luo J R, Chen X P, Xin R L, et al.Comparison of microstructure and properties of AZ31 Mg alloy sheet produced through different routes[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: s194
[30] Barnett M R.Twinning and the ductility of magnesium alloys: Part I: “Tension” twins[J]. Mater. Sci. Eng., 2007, A464: 1
[31] Barnett M R.Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins[J]. Mater. Sci. Eng., 2007, A464: 8
[32] Jiang J, Godfrey A, Liu W, et al.Identification and analysis of twinning variants during compression of a Mg-Al-Zn alloy[J]. Scr. Mater., 2008, 58: 122
[1] 邓丽萍,崔凯旋,汪炳叔,向红亮,李强. AZ31镁合金室温多道次压缩过程微观组织和织构演变的研究[J]. 金属学报, 2019, 55(8): 976-986.
[2] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[3] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[4] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[5] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[6] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[7] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[8] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[9] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[10] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[11] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.
[12] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.
[13] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[14] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
[15] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.