Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 77-82    DOI: 10.11900/0412.1961.2016.00124
  本期目录 | 过刊浏览 |
Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响
耿遥祥1(),特古斯2,汪海斌1,董闯3,王宇鑫1
1 江苏科技大学材料科学与工程学院 镇江 212003
2 内蒙古师范大学内蒙古自治区功能材料物理与化学重点实验室 呼和浩特 010022
3 大连理工大学三束材料改性教育部重点实验室 大连 116024
Effect of Sn Addition on Microstructure and Magnetism of MnFe(P, Si) Alloy
Yaoxiang GENG1(),Ojied TEGUS2,Haibin WANG1,Chuang DONG3,Yuxin WANG1
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China
3 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
引用本文:

耿遥祥,特古斯,汪海斌,董闯,王宇鑫. Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响[J]. 金属学报, 2017, 53(1): 77-82.
Yaoxiang GENG, Ojied TEGUS, Haibin WANG, Chuang DONG, Yuxin WANG. Effect of Sn Addition on Microstructure and Magnetism of MnFe(P, Si) Alloy[J]. Acta Metall Sin, 2017, 53(1): 77-82.

全文: PDF(2621 KB)   HTML
  
摘要: 

用高能球磨和固态烧结法制备了Mn1.3Fe0.7P0.5Si0.5-xSnx (x=0、0.02、0.04,原子分数)系列合金,系统研究了Sn的加入对合金显微组织、磁性和磁热效应的影响。结果表明,所有合金中都存在少量的(Fe, Mn)3Si相,在含Sn的合金中,Sn原子并没有进入到Fe2P晶体结构的晶格点阵位置,而是与Mn和Fe形成了Sn2(Mn, Fe)相。Sn的加入也使合金中形成了2种成分的(Fe, Mn)2(P, Si)相,导致样品在升温过程中出现2次铁磁-顺磁转变,对应为2个连续磁熵变峰,从而有利于合金磁制冷温区的扩展和制冷容量的提升。Mn1.3Fe0.7P0.5Si0.5合金具有优异的室温磁热效应,1.5 T磁场变化下的最大磁熵变为12.1 J/(kgK),最大绝热温变为2.4 K,合金的热滞为3 K,Curie温度为273 K,可作为室温磁制冷的理想候选材料。

关键词 Mn1.3Fe0.7P0.5Si0.5-xSnx合金显微组织室温磁制冷磁热效应热滞    
Abstract

This decade has brought an immense interest in room temperature magnetic refrigeration, because it is considered as a type of potential energy saving material and friendly to environment. MnFe(P, Si) magnetic refrigerants materials shows high-performance and relatively low-cost, which paves the effective way for commercialization of magnetic refrigeration and magnetocaloric power-conversion. The present work is devoted to investigating the effect of Sn addition on microstructure, magnetism and magnetocaloric effect on MnFe(P, Si) alloy. Mn1.3Fe0.7P0.5Si0.5-xSnx (x=0, 0.02, 0.04, atomic fraction) alloys were prepared by mechanical alloying (MA) and solid-state reaction methods. The results show that Sn atoms do not enter into the lattice position of Fe2P. The Sn2(Mn, Fe), (Fe, Mn)3Si, Si-riche (Fe, Mn)2(P, Si) and P-riche (Fe, Mn)2(P, Si) matrix phase are formed in Sn-containing alloys. Two different compositions of (Fe, Mn)2(P, Si) phase result in two ferromagnetic-paramagnetic phase transition and two magnetic entropy change (-ΔSm) peaks at the heating process. This result is in favor of expanding the working temperature and refrigerant capacity (RC) of magnetic refrigeration materials. Mn1.3Fe0.7P0.5Si0.5 alloy shows a maximal magnetic-entropy changes (-ΔSmax) of 12.1 J/(kgK) in a magnetic field change of 0~1.5 T, a maximal adiabatic temperature change (ΔTad) of 2.4 K in a magnetic field change of 0~1.48 T and a thermal hysteresis (ΔThys) of 3 K in vicinity of Curie temperature of 273 K, which can be used as a promising candidate material for room-temperature magnetic refrigeration applications.

Key wordsMn1.3Fe0.7P0.5Si0.5-xSnx alloy,    microstructure,    room temperature magnetic refrigeration,    magnetocaloric effect,    thermal hysteresis
收稿日期: 2016-04-08     
基金资助:资助项目 国际热核聚变实验堆计划项目Nos.2013GB107003和2015GB105003,国家自然科学基金项目Nos.51671045和51601073,中央高校基本科研业务费项目No.DUT16ZD209和西北工业大学凝固技术国家重点实验室开放课题项目No.SKLSP201607
图1  Mn1.3Fe0.7P0.5Si0.5-xSnx (x=0、0.02、0.04,原子分数)系列粉末合金的XRD谱
图2  Mn1.3Fe0.7P0.5Si0.5和Mn1.3Fe0.7P0.5Si0.46Sn0.04合金的SEM像
图3  Mn1.3Fe0.7P0.5Si0.5-xSnx合金在0.05 T磁场下的磁化强度M随温度T变化曲线和dM/dT曲线
图4  Mn1.3Fe0.7P0.5Si0.5和Mn1.3Fe0.7P0.5Si0.46Sn0.04合金的等温磁化(M-B)曲线
图5  Mn1.3Fe0.7P0.5Si0.5-xSnx系列合金在0~1.5 T磁场变化下的等温磁熵变(-ΔSm)曲线和Mn1.3Fe0.7P0.5Si0.5合金在0~1.48 T磁场下的绝热温变(ΔTad)曲线
Alloy Tc1
K
Tc2
K
ΔThys
K
Smax1
Jkg-1K-1
Smax2
Jkg-1K-1
RC
Jkg-1
ΔTadmax
K
Mn1.3Fe0.7P0.5Si0.5 - 273 3 - 12.1 71 2.4
Mn1.3Fe0.7P0.5Si0.48Sn0.02 190 233 10 1.3 7.8 80 -
Mn1.3Fe0.7P0.5Si0.46Sn0.04 167 213 13 1.9 5.6 87 -
表1  Mn1.3Fe0.7P0.5Si0.5-xSnx系列合金富Si的(Fe, Mn)2(P, Si)相的Curie温度(Tc1)、基体相Curie温度(Tc2)、基体相热滞(ΔThys)、富Si的(Fe, Mn)2(P, Si)相的最大磁熵变(-ΔSmax1)、基体相最大磁熵变(-ΔSmax2)、制冷容量(RC)和最大绝热温变(ΔTadmax)
[1] Chen P, Wang D H, Du Y W.Progress on working material of magnetic cooling[J]. Prog. Phys., 1999, 19: 371
[1] (陈鹏, 王敦辉, 都有为. 磁制冷工质材料的研究进展[J]. 物理学进展, 1999, 19: 371)
[2] Brück E.Developments in magnetocaloric refrigeration[J]. J. Phys., 2005, 38D: R381
[3] Brück E, Tegus O, Li X W, et al.Magnetic refrigeration-towards room-temperature applications[J]. Physica, 2003, 327B: 431
[4] Bednarz G, Geldart D J W, White M A. Heat capacity of gadolinium near the Curie temperature[J]. Phys. Rev., 1993, 47B: 14247
[5] Li J W, Huo J T, Law J Y, et al.Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature[J]. J. Appl. Phys., 2014, 116: 063902
[6] Pecharsky V K, Gschneidner K A Jr. Giant magnetocaloric effect in Gd5(Si2Ge2)[J]. Phys. Rev. Lett., 1997, 78: 4494
[7] Hu F X, Shen B G, Sun J R, et al.Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6[J]. Appl. Phys. Lett., 2001, 78: 3675
[8] Wada H, Tanabe Y.Giant magnetocaloric effect of MnAs1-xSbx[J]. Appl. Phys. Lett., 2001, 79: 3302
[9] Tegus O, Brück E, Buschow K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415: 150
[10] Trung N T, Zhang L, Caron L, et al.Giant magnetocaloric effects by tailoring the phase transitions[J]. Appl. Phys. Lett., 2010, 96: 172504
[11] Tegus O, Fuquan B, Dagula W, et al.Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3-xGex[J]. J. Alloys Compd., 2005, 396: 6
[12] Dagula W, Tegus O, Li X W, et al. Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5–xSix(x=0~0.3) compounds [J]. J. Appl. Phys., 2006, 99: 08Q105
[13] Thanh D T C, Brück E, Tegus O, et al. Magnetocaloric effect in MnFe(P, Si, Ge) compounds [J]. J. Appl. Phys., 2006, 99: 08Q107
[14] Song L, Wang G F, Ou Z Q, et al.Magnetic properties and magnetocaloric effect of MnFeP0.5Ge0.5-xSix compounds[J]. J. Alloys Compd., 2009, 474: 388
[15] Trung N T, Ou Z Q, Gortenmulder T J, et al.Tunable thermal hysteresis in MnFe(P, Ge) compounds[J]. Appl. Phys. Lett., 2009, 94: 102513
[16] Dung N H, Zhang L, Ou Z Q, et al.From first-order magneto-elastic to magneto-structural transition in (Mn, Fe)1.95P0.50Si0.50 compounds[J]. Appl. Phys. Lett., 2011, 99: 092511
[17] Geng Y X, Tegus O, Bi L G.Magnetocaloric effects in Mn1.35Fe0.65P1-xSix compounds[J] Chin. Phys., 2012, 21B: 037504
[18] Tegus O, Bao L H, Song L.Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)[J]. Chin. Phys., 2013, 22B: 037506
[19] Dung N H, Ou Z Q, Caron L, et al.Mixed magnetism for refrigeration and energy conversion[J]. Adv. Energy Mater., 2011, 1: 1215
[20] Yibole H, Guillou F, Zhang L, et al.Direct measurement of the magnetocaloric effect in MnFe (P, X) (X = As, Ge, Si) materials[J]. J. Phys., 2014, 47D: 075002
[21] Geng Y X, Tegus O.Experimental study on the magnetocaloric effect in Mn1.2Fe0.8-xCoxP0.48Si0.52 compounds[J]. J. Magn. Mater. Dev., 2011, 42(5): 17
[21] (耿遥祥, 特古斯. Mn1.2Fe0.8-xCoxP0.48Si0.52化合物磁热效应研究[J]. 磁性材料及器件, 2011, 42(5): 17)
[22] Geng Y X, Tegus O, Bi L G, et al.Influence of different preparation techniques and raw materials on magnetocaloric effect in Mn1.2Fe0.8P0.48Si0.52 compound[J]. J. Chin. Rare Earth Soc., 2011, 29: 266
[22] (耿遥祥, 特古斯, 毕力格等. 不同工艺和原料对Mn1.2Fe0.8P0.48Si0.52化合物磁热效应的影响[J]. 中国稀土学报, 2011, 29: 266)
[23] Hashimoto T, Numasawa T, Shino M, et al.Magnetic refrigeration in the temperature range from 10 K to room temperature: The ferromagnetic refrigerants[J]. Cryogenics, 1981, 21: 647
[24] Chirkova A, Skokov K P, Schultz L, et al.Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions[J]. Acta Mater., 2016, 106: 15
[25] Duan T F, Ren W J, Liu W, et al.Magnetization processes and transitions between two antiferromagnetic spin configurations in single-crystalline MnSn2[J]. Physica, 2016, 495B: 94
[26] Huliyageqi B, Geng Y X, Li Y J, et al.A significant reduction of hysteresis in MnFe(P, Si) compounds[J]. J. Korean Phys. Soc., 2013, 63: 525
[27] Zheng Z G, Tan Z C, Yu H Y, et al.Structural, magnetic properties and magnetocaloric effect of Mn1.2Fe0.8P1-xSixB0.03 compounds[J]. Mater. Res. Bull., 2016, 77: 29
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.