Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 77-82    DOI: 10.11900/0412.1961.2016.00124
  本期目录 | 过刊浏览 |
Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响
耿遥祥1(),特古斯2,汪海斌1,董闯3,王宇鑫1
1 江苏科技大学材料科学与工程学院 镇江 212003
2 内蒙古师范大学内蒙古自治区功能材料物理与化学重点实验室 呼和浩特 010022
3 大连理工大学三束材料改性教育部重点实验室 大连 116024
Effect of Sn Addition on Microstructure and Magnetism of MnFe(P, Si) Alloy
Yaoxiang GENG1(),Ojied TEGUS2,Haibin WANG1,Chuang DONG3,Yuxin WANG1
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022, China
3 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
全文: PDF(2621 KB)   HTML
  
摘要: 

用高能球磨和固态烧结法制备了Mn1.3Fe0.7P0.5Si0.5-xSnx (x=0、0.02、0.04,原子分数)系列合金,系统研究了Sn的加入对合金显微组织、磁性和磁热效应的影响。结果表明,所有合金中都存在少量的(Fe, Mn)3Si相,在含Sn的合金中,Sn原子并没有进入到Fe2P晶体结构的晶格点阵位置,而是与Mn和Fe形成了Sn2(Mn, Fe)相。Sn的加入也使合金中形成了2种成分的(Fe, Mn)2(P, Si)相,导致样品在升温过程中出现2次铁磁-顺磁转变,对应为2个连续磁熵变峰,从而有利于合金磁制冷温区的扩展和制冷容量的提升。Mn1.3Fe0.7P0.5Si0.5合金具有优异的室温磁热效应,1.5 T磁场变化下的最大磁熵变为12.1 J/(kgK),最大绝热温变为2.4 K,合金的热滞为3 K,Curie温度为273 K,可作为室温磁制冷的理想候选材料。

关键词 Mn1.3Fe0.7P0.5Si0.5-xSnx合金显微组织室温磁制冷磁热效应热滞    
Abstract

This decade has brought an immense interest in room temperature magnetic refrigeration, because it is considered as a type of potential energy saving material and friendly to environment. MnFe(P, Si) magnetic refrigerants materials shows high-performance and relatively low-cost, which paves the effective way for commercialization of magnetic refrigeration and magnetocaloric power-conversion. The present work is devoted to investigating the effect of Sn addition on microstructure, magnetism and magnetocaloric effect on MnFe(P, Si) alloy. Mn1.3Fe0.7P0.5Si0.5-xSnx (x=0, 0.02, 0.04, atomic fraction) alloys were prepared by mechanical alloying (MA) and solid-state reaction methods. The results show that Sn atoms do not enter into the lattice position of Fe2P. The Sn2(Mn, Fe), (Fe, Mn)3Si, Si-riche (Fe, Mn)2(P, Si) and P-riche (Fe, Mn)2(P, Si) matrix phase are formed in Sn-containing alloys. Two different compositions of (Fe, Mn)2(P, Si) phase result in two ferromagnetic-paramagnetic phase transition and two magnetic entropy change (-ΔSm) peaks at the heating process. This result is in favor of expanding the working temperature and refrigerant capacity (RC) of magnetic refrigeration materials. Mn1.3Fe0.7P0.5Si0.5 alloy shows a maximal magnetic-entropy changes (-ΔSmax) of 12.1 J/(kgK) in a magnetic field change of 0~1.5 T, a maximal adiabatic temperature change (ΔTad) of 2.4 K in a magnetic field change of 0~1.48 T and a thermal hysteresis (ΔThys) of 3 K in vicinity of Curie temperature of 273 K, which can be used as a promising candidate material for room-temperature magnetic refrigeration applications.

Key wordsMn1.3Fe0.7P0.5Si0.5-xSnx alloy,    microstructure,    room temperature magnetic refrigeration,    magnetocaloric effect,    thermal hysteresis
收稿日期: 2016-04-08      出版日期: 2016-11-09
基金资助:资助项目 国际热核聚变实验堆计划项目Nos.2013GB107003和2015GB105003,国家自然科学基金项目Nos.51671045和51601073,中央高校基本科研业务费项目No.DUT16ZD209和西北工业大学凝固技术国家重点实验室开放课题项目No.SKLSP201607

引用本文:

耿遥祥,特古斯,汪海斌,董闯,王宇鑫. Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响[J]. 金属学报, 2017, 53(1): 77-82.
Yaoxiang GENG,Ojied TEGUS,Haibin WANG,Chuang DONG,Yuxin WANG. Effect of Sn Addition on Microstructure and Magnetism of MnFe(P, Si) Alloy. Acta Metall, 2017, 53(1): 77-82.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00124      或      http://www.ams.org.cn/CN/Y2017/V53/I1/77

图1  Mn1.3Fe0.7P0.5Si0.5-xSnx (x=0、0.02、0.04,原子分数)系列粉末合金的XRD谱
图2  Mn1.3Fe0.7P0.5Si0.5和Mn1.3Fe0.7P0.5Si0.46Sn0.04合金的SEM像
图3  Mn1.3Fe0.7P0.5Si0.5-xSnx合金在0.05 T磁场下的磁化强度M随温度T变化曲线和dM/dT曲线
图4  Mn1.3Fe0.7P0.5Si0.5和Mn1.3Fe0.7P0.5Si0.46Sn0.04合金的等温磁化(M-B)曲线
图5  Mn1.3Fe0.7P0.5Si0.5-xSnx系列合金在0~1.5 T磁场变化下的等温磁熵变(-ΔSm)曲线和Mn1.3Fe0.7P0.5Si0.5合金在0~1.48 T磁场下的绝热温变(ΔTad)曲线
Alloy Tc1
K
Tc2
K
ΔThys
K
Smax1
Jkg-1K-1
Smax2
Jkg-1K-1
RC
Jkg-1
ΔTadmax
K
Mn1.3Fe0.7P0.5Si0.5 - 273 3 - 12.1 71 2.4
Mn1.3Fe0.7P0.5Si0.48Sn0.02 190 233 10 1.3 7.8 80 -
Mn1.3Fe0.7P0.5Si0.46Sn0.04 167 213 13 1.9 5.6 87 -
表1  Mn1.3Fe0.7P0.5Si0.5-xSnx系列合金富Si的(Fe, Mn)2(P, Si)相的Curie温度(Tc1)、基体相Curie温度(Tc2)、基体相热滞(ΔThys)、富Si的(Fe, Mn)2(P, Si)相的最大磁熵变(-ΔSmax1)、基体相最大磁熵变(-ΔSmax2)、制冷容量(RC)和最大绝热温变(ΔTadmax)
[3] Brück E, Tegus O, Li X W, et al.Magnetic refrigeration-towards room-temperature applications[J]. Physica, 2003, 327B: 431
[1] Chen P, Wang D H, Du Y W.Progress on working material of magnetic cooling[J]. Prog. Phys., 1999, 19: 371
[4] Bednarz G, Geldart D J W, White M A. Heat capacity of gadolinium near the Curie temperature[J]. Phys. Rev., 1993, 47B: 14247
[1] (陈鹏, 王敦辉, 都有为. 磁制冷工质材料的研究进展[J]. 物理学进展, 1999, 19: 371)
[2] Brück E.Developments in magnetocaloric refrigeration[J]. J. Phys., 2005, 38D: R381
[5] Li J W, Huo J T, Law J Y, et al.Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature[J]. J. Appl. Phys., 2014, 116: 063902
[3] Brück E, Tegus O, Li X W, et al.Magnetic refrigeration-towards room-temperature applications[J]. Physica, 2003, 327B: 431
[6] Pecharsky V K, Gschneidner K A Jr. Giant magnetocaloric effect in Gd5(Si2Ge2)[J]. Phys. Rev. Lett., 1997, 78: 4494
[7] Hu F X, Shen B G, Sun J R, et al.Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6[J]. Appl. Phys. Lett., 2001, 78: 3675
[4] Bednarz G, Geldart D J W, White M A. Heat capacity of gadolinium near the Curie temperature[J]. Phys. Rev., 1993, 47B: 14247
[8] Wada H, Tanabe Y.Giant magnetocaloric effect of MnAs1-xSbx[J]. Appl. Phys. Lett., 2001, 79: 3302
[5] Li J W, Huo J T, Law J Y, et al.Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature[J]. J. Appl. Phys., 2014, 116: 063902
[9] Tegus O, Brück E, Buschow K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415: 150
[6] Pecharsky V K, Gschneidner K A Jr. Giant magnetocaloric effect in Gd5(Si2Ge2)[J]. Phys. Rev. Lett., 1997, 78: 4494
[10] Trung N T, Zhang L, Caron L, et al.Giant magnetocaloric effects by tailoring the phase transitions[J]. Appl. Phys. Lett., 2010, 96: 172504
[7] Hu F X, Shen B G, Sun J R, et al.Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6[J]. Appl. Phys. Lett., 2001, 78: 3675
[11] Tegus O, Fuquan B, Dagula W, et al.Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3-xGex[J]. J. Alloys Compd., 2005, 396: 6
[8] Wada H, Tanabe Y.Giant magnetocaloric effect of MnAs1-xSbx[J]. Appl. Phys. Lett., 2001, 79: 3302
[12] Dagula W, Tegus O, Li X W, et al. Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5–xSix(x=0~0.3) compounds [J]. J. Appl. Phys., 2006, 99: 08Q105
[9] Tegus O, Brück E, Buschow K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415: 150
[13] Thanh D T C, Brück E, Tegus O, et al. Magnetocaloric effect in MnFe(P, Si, Ge) compounds [J]. J. Appl. Phys., 2006, 99: 08Q107
[10] Trung N T, Zhang L, Caron L, et al.Giant magnetocaloric effects by tailoring the phase transitions[J]. Appl. Phys. Lett., 2010, 96: 172504
[14] Song L, Wang G F, Ou Z Q, et al.Magnetic properties and magnetocaloric effect of MnFeP0.5Ge0.5-xSix compounds[J]. J. Alloys Compd., 2009, 474: 388
[11] Tegus O, Fuquan B, Dagula W, et al.Magnetic-entropy change in Mn1.1Fe0.9P0.7As0.3-xGex[J]. J. Alloys Compd., 2005, 396: 6
[15] Trung N T, Ou Z Q, Gortenmulder T J, et al.Tunable thermal hysteresis in MnFe(P, Ge) compounds[J]. Appl. Phys. Lett., 2009, 94: 102513
[12] Dagula W, Tegus O, Li X W, et al. Magnetic properties and magnetic-entropy change of MnFeP0.5As0.5–xSix(x=0~0.3) compounds [J]. J. Appl. Phys., 2006, 99: 08Q105
[16] Dung N H, Zhang L, Ou Z Q, et al.From first-order magneto-elastic to magneto-structural transition in (Mn, Fe)1.95P0.50Si0.50 compounds[J]. Appl. Phys. Lett., 2011, 99: 092511
[13] Thanh D T C, Brück E, Tegus O, et al. Magnetocaloric effect in MnFe(P, Si, Ge) compounds [J]. J. Appl. Phys., 2006, 99: 08Q107
[17] Geng Y X, Tegus O, Bi L G.Magnetocaloric effects in Mn1.35Fe0.65P1-xSix compounds[J] Chin. Phys., 2012, 21B: 037504
[14] Song L, Wang G F, Ou Z Q, et al.Magnetic properties and magnetocaloric effect of MnFeP0.5Ge0.5-xSix compounds[J]. J. Alloys Compd., 2009, 474: 388
[18] Tegus O, Bao L H, Song L.Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)[J]. Chin. Phys., 2013, 22B: 037506
[15] Trung N T, Ou Z Q, Gortenmulder T J, et al.Tunable thermal hysteresis in MnFe(P, Ge) compounds[J]. Appl. Phys. Lett., 2009, 94: 102513
[19] Dung N H, Ou Z Q, Caron L, et al.Mixed magnetism for refrigeration and energy conversion[J]. Adv. Energy Mater., 2011, 1: 1215
[16] Dung N H, Zhang L, Ou Z Q, et al.From first-order magneto-elastic to magneto-structural transition in (Mn, Fe)1.95P0.50Si0.50 compounds[J]. Appl. Phys. Lett., 2011, 99: 092511
[20] Yibole H, Guillou F, Zhang L, et al.Direct measurement of the magnetocaloric effect in MnFe (P, X) (X = As, Ge, Si) materials[J]. J. Phys., 2014, 47D: 075002
[17] Geng Y X, Tegus O, Bi L G.Magnetocaloric effects in Mn1.35Fe0.65P1-xSix compounds[J] Chin. Phys., 2012, 21B: 037504
[21] Geng Y X, Tegus O.Experimental study on the magnetocaloric effect in Mn1.2Fe0.8-xCoxP0.48Si0.52 compounds[J]. J. Magn. Mater. Dev., 2011, 42(5): 17
[18] Tegus O, Bao L H, Song L.Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)[J]. Chin. Phys., 2013, 22B: 037506
[21] (耿遥祥, 特古斯. Mn1.2Fe0.8-xCoxP0.48Si0.52化合物磁热效应研究[J]. 磁性材料及器件, 2011, 42(5): 17)
[19] Dung N H, Ou Z Q, Caron L, et al.Mixed magnetism for refrigeration and energy conversion[J]. Adv. Energy Mater., 2011, 1: 1215
[22] Geng Y X, Tegus O, Bi L G, et al.Influence of different preparation techniques and raw materials on magnetocaloric effect in Mn1.2Fe0.8P0.48Si0.52 compound[J]. J. Chin. Rare Earth Soc., 2011, 29: 266
[20] Yibole H, Guillou F, Zhang L, et al.Direct measurement of the magnetocaloric effect in MnFe (P, X) (X = As, Ge, Si) materials[J]. J. Phys., 2014, 47D: 075002
[22] (耿遥祥, 特古斯, 毕力格等. 不同工艺和原料对Mn1.2Fe0.8P0.48Si0.52化合物磁热效应的影响[J]. 中国稀土学报, 2011, 29: 266)
[23] Hashimoto T, Numasawa T, Shino M, et al.Magnetic refrigeration in the temperature range from 10 K to room temperature: The ferromagnetic refrigerants[J]. Cryogenics, 1981, 21: 647
[21] Geng Y X, Tegus O.Experimental study on the magnetocaloric effect in Mn1.2Fe0.8-xCoxP0.48Si0.52 compounds[J]. J. Magn. Mater. Dev., 2011, 42(5): 17
[21] (耿遥祥, 特古斯. Mn1.2Fe0.8-xCoxP0.48Si0.52化合物磁热效应研究[J]. 磁性材料及器件, 2011, 42(5): 17)
[24] Chirkova A, Skokov K P, Schultz L, et al.Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions[J]. Acta Mater., 2016, 106: 15
[22] Geng Y X, Tegus O, Bi L G, et al.Influence of different preparation techniques and raw materials on magnetocaloric effect in Mn1.2Fe0.8P0.48Si0.52 compound[J]. J. Chin. Rare Earth Soc., 2011, 29: 266
[25] Duan T F, Ren W J, Liu W, et al.Magnetization processes and transitions between two antiferromagnetic spin configurations in single-crystalline MnSn2[J]. Physica, 2016, 495B: 94
[22] (耿遥祥, 特古斯, 毕力格等. 不同工艺和原料对Mn1.2Fe0.8P0.48Si0.52化合物磁热效应的影响[J]. 中国稀土学报, 2011, 29: 266)
[26] Huliyageqi B, Geng Y X, Li Y J, et al.A significant reduction of hysteresis in MnFe(P, Si) compounds[J]. J. Korean Phys. Soc., 2013, 63: 525
[23] Hashimoto T, Numasawa T, Shino M, et al.Magnetic refrigeration in the temperature range from 10 K to room temperature: The ferromagnetic refrigerants[J]. Cryogenics, 1981, 21: 647
[27] Zheng Z G, Tan Z C, Yu H Y, et al.Structural, magnetic properties and magnetocaloric effect of Mn1.2Fe0.8P1-xSixB0.03 compounds[J]. Mater. Res. Bull., 2016, 77: 29
[24] Chirkova A, Skokov K P, Schultz L, et al.Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions[J]. Acta Mater., 2016, 106: 15
[25] Duan T F, Ren W J, Liu W, et al.Magnetization processes and transitions between two antiferromagnetic spin configurations in single-crystalline MnSn2[J]. Physica, 2016, 495B: 94
[26] Huliyageqi B, Geng Y X, Li Y J, et al.A significant reduction of hysteresis in MnFe(P, Si) compounds[J]. J. Korean Phys. Soc., 2013, 63: 525
[27] Zheng Z G, Tan Z C, Yu H Y, et al.Structural, magnetic properties and magnetocaloric effect of Mn1.2Fe0.8P1-xSixB0.03 compounds[J]. Mater. Res. Bull., 2016, 77: 29
[1] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.
[2] 陈波, 郝宪朝, 马颖澈, 查向东, 刘奎. 添加N对Inconel 690合金显微组织和晶界微区成分的影响[J]. 金属学报, 2017, 53(8): 983-990.
[3] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[4] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[5] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[6] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
[7] 江鹏,袁同心,于彦东. 加工条件对多相V-Ti-Ni合金的显微组织和氢渗透性能的影响[J]. 金属学报, 2017, 53(4): 433-439.
[8] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[9] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[10] 王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
[11] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[12] 彭聪, 张书源, 任玲, 杨柯. 冷却速率对含Cu钛合金显微组织和性能的影响[J]. 金属学报, 2017, 53(10): 1377-1384.
[13] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[14] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[15] 黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.