Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 38-46    DOI: 10.11900/0412.1961.2016.00123
  本期目录 | 过刊浏览 |
粉末冶金制备Ti-Fe二元合金的耐腐蚀性能
徐伟1,路新1(),杜艳霞1,孟庆宇2,黎鸣1,曲选辉1
1北京科技大学新材料技术研究院 北京 100083
2北京科技大学冶金与生态工程学院 北京 100083
Corrosion Resistance of Ti-Fe Binary Alloys Fabricated by Powder Metallurgy
Wei XU1,Xin LU1(),Yanxia DU1,Qingyu MENG2,Ming LI1,Xuanhui QU1
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(2109 KB)   HTML
  
摘要: 

采用粉末冶金模压烧结技术制备了Ti-(2~20)Fe二元合金,探讨了Fe含量对合金的力学性能及耐腐蚀性能的影响,并与铸造CP Ti和Ti-6Al-4V合金的耐腐蚀性能进行了对比。结果表明,随着Fe含量的增加,合金α相含量逐渐降低,β相含量逐渐提高。当Fe含量达到20%时,基本形成单一β相合金。随Fe含量的升高,粉末冶金Ti-(2~20)Fe二元合金的强度及塑性趋于升高,而弹性模量趋于降低。相对而言,Ti-15Fe合金的综合性能最佳,其抗压强度为2702 MPa,压缩率为32.7%,弹性模量为64.6 GPa。随着Fe含量在2%~15%范围内提高,合金的自腐蚀电位正向移动,腐蚀电流密度降低,极化电阻不断增大,腐蚀速率不断降低,耐蚀性能逐渐提高,而Ti-20Fe合金耐腐蚀性能与Ti-15Fe合金接近。Ti-15Fe合金在模拟口腔液(FAS)、磷酸盐缓冲溶液(PBS)、模拟体液(SBF)以及0.9%NaCl溶液(SS)中的腐蚀速率分别为1.7×10-3、7.1×10-4、1.2×10-3和3.5×10-4 mm/y。与铸造CP Ti和Ti-6Al-4V合金相比,Ti-15Fe合金具有较正的自腐蚀电位、较小的腐蚀电流密度和腐蚀速率及较大的极化电阻,耐蚀性能明显优于CP Ti和Ti-6Al-4V合金。

关键词 Ti-Fe二元合金粉末冶金耐腐蚀性能生物医用腐蚀速率    
Abstract

Titanium and its alloys have been widely used in the biomedical field, and have a great potential in making orthopedic implants due to their high specific strength, low elastic modulus, excellent biocompatibility and corrosion resistance in the human body environment. However, important titanium alloys currently used including extra low interstitial (ELI) Ti-6Al-4V (hereafter all in mass fraction, %), Ti-5Al-2.5Fe and Ti-6Al-7Nb are all at risk of releasing toxic Al and V ions in vivo. In addition, the elastic modulus (about 110 GPa) of these alloys are still much higher than those of cortical bones (about 20 GPa), which may bring severe ‘stress shielding’ for implantation failures. In order to solve these problems, much effort has been made to develop Al- and V-free lower-modulus β-Ti alloys. Considering that Fe is one of most effective and low-cost β-phase stabilizing element in titanium, binary Ti-Fe alloys have been selected and an assessment of the potential for biomedical applications has been conducted from the perspectives of their manufacturability, mechanical properties and biocorrosion performance. In this study, Ti-xFe (2%≤x≤20%) alloys were fabricated by powder metallurgy, and their microstructure and compression properties were characterized. In particular, the corrosion properties in four different simulated physiological electrolytes at (37±0.5) ℃ were investigated according to ASTM 59-97, compared with the performances of two commonly used titanium-based materials Ti-6Al-4V and commercially pure (CP) titanium. The results show that the content of β phase gradually increases with Fe content increasing. When Fe content goes up to 20%, the alloy samples are only composed of single β-phase grains. The PM-fabricated Ti-(2~20)Fe alloy is provided with a superior combination of mechanical properties, with the compressive strength range of 2096.2~2702.3 MPa, the compression ratio of 20.6%~33.2% and the elasticity modulus of 62.7~85.5 GPa. Higher Fe content tends to lead to the higher strength and ductility, but lower elastic modulus. In comparison, Ti-15Fe sintered at 1150 ℃ exhibits the superior mechanical properties, including the elastic modulus of 64.6 GPa, the compressive strength of 2702 MPa, and the compression rate of 32.7%. With the rise of Fe content in 2%~15%, the corrosion potential of alloys moves to a positive position, and the corrosion current density decreases, corresponding to the increase in the polarization resistance, which suggests the improvement of their corrosion properties. The binary alloy with 20%Fe possesses the similar corrosion performance to that of Ti-15Fe. The corrosion rates of Ti-15Fe alloy in simulated oral solution (FAS), phosphate buffer solution (PBS), simulated body fluid solution (SBF) and 0.9%NaCl solution (SS) are 1.7×10-3, 7.1×10-4, 1.2×10-3 and 3.5×10-4 mm/y, respectively. Compared with CP Ti and Ti-6Al-4V, Ti-15Fe alloy exhibits a more positive corrosion potential, smaller corrosion current density and higher polarization resistance, indicating a superior corrosion resistance.

Key wordsTi-Fe binary alloy    powder metallurgy    corrosion resistance    biomedical    corrosion rate
收稿日期: 2016-04-07      出版日期: 2016-11-15
基金资助:项目资助 北京市自然科学基金项目No.2163053和北京科技大学新金属材料国家重点实验室开放基金项目No.2012Z-10

引用本文:

徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
Wei XU,Xin LU,Yanxia DU,Qingyu MENG,Ming LI,Xuanhui QU. Corrosion Resistance of Ti-Fe Binary Alloys Fabricated by Powder Metallurgy. Acta Metall, 2017, 53(1): 38-46.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00123      或      http://www.ams.org.cn/CN/Y2017/V53/I1/38

图1  Ti-(2~20)Fe二元合金的XRD谱
图2  Ti-(2~20)Fe二元合金显微组织的SEM像
图3  Ti-(2~20)Fe二元合金的力学性能
Alloy FAS PBS SBF SS
Ti-2Fe -361.1±10.8 -405.9±11.6 -420.2±9.8 -302.5±11.1
Ti-5Fe -348.1±11.3 -367.4±9.7 -397.1±9.5 -284.5±10.3
Ti-10Fe -306.4±8.9 -340.1±10.4 -333.5±10.7 -280.3±8.6
Ti-15Fe -286.9±8.2 -280.2±8.8 -168.4±11.6 -43.77±9.4
Ti-20Fe -290.8±10.5 -304.9±8.6 -188.6±10.1 -77.04±10.2
表1  Ti-(2~20)Fe二元合金在不同溶液中自腐蚀电位Ecorr
图4  Ti-(2~20)Fe二元合金在不同溶液中动电位极化曲线
图5  Ti-(2~20)Fe合金在不同溶液中腐蚀电流密度和腐蚀速率
Alloy FAS PBS SBF SS
βa βc Rp βa βc Rp βa βc Rp βa βc Rp
Ωcm-2 Ωcm-2 Ωcm-2 Ωcm-2
Ti-2Fe 293.9±10.8 116.5±5.7 80.6±3.2 470.8±12.3 121.1±10.4 261.7±16.3 351.8±19.5 92.1±9.5 83.5±6.9 477.4±21.5 154.9±5.6 508.5±22.9
Ti-5Fe 305.3±16.5 125.7±9.9 99.3±5.7 323.4±10.8 125.3±7.5 280.5±13.6 302.4±18.4 115.1±5.4 131.2±6.8 422.1±17.6 173.7±8.9 764.3±18.6
Ti-10Fe 278.1±11.2 145.9±8.5 138.7±9.7 263.1±14.5 121.7±7.8 328.9±18.9 285.6±16.2 135.6±8.9 166.6±10.2 403.5±12.6 175.5±9.9 886.3±26.9
Ti-15Fe 282.3±15.3 168.5±11.2 229.4±17.4 168.7±10.5 145.1±8.8 423.9±21.2 115.6±7.6 188.4±8.2 222.5±14.6 166.7±8.7 211.3±9.9 1012.9±45.6
Ti-20Fe 265.4±14.6 146.2±6.8 227.7±7.9 202.5±10.9 141.4±13.6 517.1±15.9 225.8±11.2 156.7±10.6 268.1±16.4 165.2±6.9 199.5±10.8 982.3±35.9
表2  Ti-(2~20)Fe合金阴阳极Tafel区斜率(βc和βa)及极化电阻Rp
图6  纯Ti、Ti-6Al-4V和Ti-15Fe合金在4种不同溶液中的动电位极化曲线
Alloy FAS PBS SBF SS
Pure Ti -368.4±11.2 -366±12.6 -380±19.5 -372.9±15.4
Ti-6Al-4V -374.6±11.3 -414±11.5 -433±19.1 -379±11.8
Ti-15Fe -286.9±8.2 -280.2±8.8 -168.4±11.6 -43.77±9.4
表3  纯Ti、Ti-6Al-4V及Ti-15Fe合金的自腐蚀电位Ecorr
图7  纯Ti、Ti-6Al-4V合金及Ti-15Fe合金在不同溶液中的腐蚀电流密度和腐蚀速率
Alloy FAS PBS SBF SS
βa βc Rp
Ωcm-2
βa βc Rp
Ωcm-2
βa βc Rp
Ωcm-2
βa βc Rp
Ωcm-2
CP Ti 685.9±26.9 301.2±13.5 66.4±7.8 444.1±26.8 318.6±16.5 103.4±8.5 308.6±15.9 171.8±10.2 36.4±4.6 525.7±26.4 195.6±6.9 98.3±4.3
Ti-6Al-4V 675.1±26.5 287.1±12.8 66.3±5.6 360.9±9.8 212.1±11.6 89.4±5.9 296.8±10.6 205.4±12.6 29.4±3.6 338.8±14.3 171.8±12.6 95.3±9.9
Ti-15Fe 282.3±15.3 168.5±11.2 229.4±17.4 168.7±10.5 145.1±8.8 423.9±21.2 115.6±7.6 188.4±8.2 222.5±14.6 166.7±8.7 211.3±9.9 1012.9±45.6
表4  纯Ti、Ti-6Al-4V合金及Ti-15Fe合金的βc、βa和Rp
[1] Li Y Y, Zou L M, Yang C.Fabrication of biomedical Titanium alloys with high strength and low modulus by means of powder metallurgy[J]. J. South China Univ. Technol.: Nat. Sci. Ed., 2012, 40(10): 43
[1] Li Y Y, Zou L M, Yang C.Fabrication of biomedical Titanium alloys with high strength and low modulus by means of powder metallurgy[J]. J. South China Univ. Technol.: Nat. Sci. Ed., 2012, 40(10): 43
[1] (李元元, 邹黎明, 杨超. 粉末冶金法合成高强低模超细晶医用钛合金[J]. 华南理工大学学报(自然科学版), 2012, 40(10): 43)
[1] (李元元, 邹黎明, 杨超. 粉末冶金法合成高强低模超细晶医用钛合金[J]. 华南理工大学学报(自然科学版), 2012, 40(10): 43)
[2] Zhao X F, Niinomi M, Nakai M, et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 1990
[2] Zhao X F, Niinomi M, Nakai M, et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 1990
[3] Mohammadi S, Wictorin L, Ericsonetal L E, et al.Cast titanium as implant material[J]. J. Mater. Sci.: Mater. Med., 1995, 6: 435
[3] Mohammadi S, Wictorin L, Ericsonetal L E, et al.Cast titanium as implant material[J]. J. Mater. Sci.: Mater. Med., 1995, 6: 435
[4] Wang K.The use of titanium for medical applications in the USA[J]. Mater. Sci. Eng., 1996, A213: 134
[5] Niinomi M, Kuroda D, Fukunaga K, et al.Corrosion wear fracture of new β type biomedical titanium alloys[J]. Mater. Sci. Eng., 1999, A263: 193
[6] Chen B Y, Hwang K S, Ng K L.Effect of cooling process on the α phase formation and mechanical properties of sintered Ti-Fe alloys[J]. Mater. Sci. Eng., 2011, A528: 4556
[4] Wang K.The use of titanium for medical applications in the USA[J]. Mater. Sci. Eng., 1996, A213: 134
[7] Jin Q, Li Q, Wang X Y.Study of Ti-Fe alloy preparation with powder metallurgy method[J]. J. Liaoning Inst. Technol.: Nat. Sci. Ed., 2015, 35(2): 120
[5] Niinomi M, Kuroda D, Fukunaga K, et al.Corrosion wear fracture of new β type biomedical titanium alloys[J]. Mater. Sci. Eng., 1999, A263: 193
[7] (金秋, 李强, 王新宇. 粉末冶金法制备Ti-Fe系合金的研究[J]. 辽宁工业大学学报(自然科学版), 2015, 35(2): 120)
[6] Chen B Y, Hwang K S, Ng K L.Effect of cooling process on the α phase formation and mechanical properties of sintered Ti-Fe alloys[J]. Mater. Sci. Eng., 2011, A528: 4556
[8] Meng Q Y, Lu X, Xu W, et al.Microstructure and mechanical properties of powder metallurgy Ti-Fe alloys[J]. Trans. Mater. Heat Treat., 2016, 37(8): 36
[8] (孟庆宇, 路新, 徐伟等. 粉末冶金Ti-Fe合金的显微组织及力学性能[J]. 材料热处理学报, 2016, 37(8): 36)
[7] Jin Q, Li Q, Wang X Y.Study of Ti-Fe alloy preparation with powder metallurgy method[J]. J. Liaoning Inst. Technol.: Nat. Sci. Ed., 2015, 35(2): 120
[7] (金秋, 李强, 王新宇. 粉末冶金法制备Ti-Fe系合金的研究[J]. 辽宁工业大学学报(自然科学版), 2015, 35(2): 120)
[9] Dewidar M M, Khalil K A, Lim J K.Processing and mechanical properties of porous 316L stainless steel for biomedical applications[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 468
[8] Meng Q Y, Lu X, Xu W, et al.Microstructure and mechanical properties of powder metallurgy Ti-Fe alloys[J]. Trans. Mater. Heat Treat., 2016, 37(8): 36
[10] Yu H, Wegehaupt F J, Wiegand A, et al.Erosion and abrasion of tooth-colored restorative materials and human enamel[J]. J. Dent., 2009, 37: 913
[8] (孟庆宇, 路新, 徐伟等. 粉末冶金Ti-Fe合金的显微组织及力学性能[J]. 材料热处理学报, 2016, 37(8): 36)
[11] Liu Y, Chen L F, Tang H P, et al.Design of powder metallurgy titanium alloys and composites[J]. Mater. Sci. Eng., 2006, A418: 25
[9] Dewidar M M, Khalil K A, Lim J K.Processing and mechanical properties of porous 316L stainless steel for biomedical applications[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 468
[12] Wang M, Song X P.Study actuality of corrosion, mechanical compatibility and biocompatibility of Titanium alloys for medical application[J]. Titanium Ind. Prog., 2008, 25(2): 13
[10] Yu H, Wegehaupt F J, Wiegand A, et al.Erosion and abrasion of tooth-colored restorative materials and human enamel[J]. J. Dent., 2009, 37: 913
[12] (王明, 宋西平. 医用钛合金腐蚀、力学相容性和生物相容性研究现状[J]. 钛工业发展, 2008, 25(2): 13)
[13] Majima K, Hirata T, Yamamoto M, et al.Tensile properties and corrosion behavior of hot isostatically pressed Ti-Fe alloy[J]. Nippon Kinzoku Gakkai-si, 1998, 52: 1113
[11] Liu Y, Chen L F, Tang H P, et al.Design of powder metallurgy titanium alloys and composites[J]. Mater. Sci. Eng., 2006, A418: 25
[14] Solar R J, Pollack S R, Korostoff E.Titanium release from implants: a proposed mechanism [A]. Corrosion and Degradation of Implant Materials[C]. Philadelphia, PA: ASTM, 1979: 161
[12] Wang M, Song X P.Study actuality of corrosion, mechanical compatibility and biocompatibility of Titanium alloys for medical application[J]. Titanium Ind. Prog., 2008, 25(2): 13
[12] (王明, 宋西平. 医用钛合金腐蚀、力学相容性和生物相容性研究现状[J]. 钛工业发展, 2008, 25(2): 13)
[15] Arcella F G, Froes F H.Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52(5): 28
[13] Majima K, Hirata T, Yamamoto M, et al.Tensile properties and corrosion behavior of hot isostatically pressed Ti-Fe alloy[J]. Nippon Kinzoku Gakkai-si, 1998, 52: 1113
[16] Lee E B, Han M K, Kim B J, et al.Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys[J]. Int. J. Mater. Res., 2014, 105: 847
[17] Wang B L, Zheng Y F, Zhao L C.Effects of Hf content and immersion timeon electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9%NaCl solution[J]. Mater. Corros., 2009, 60: 330
[14] Solar R J, Pollack S R, Korostoff E.Titanium release from implants: a proposed mechanism [A]. Corrosion and Degradation of Implant Materials[C]. Philadelphia, PA: ASTM, 1979: 161
[18] Liu Y, Chen L F, Tang H P, et al.Design of powder metallurgy titanium alloys and composites[J]. Mater. Sci. Eng., 2006, A418: 25
[15] Arcella F G, Froes F H.Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52(5): 28
[19] Zhang X P, Yu S R, He Z M, et al.Mechanical properties of new type Ti-Fe-Mo-Mn-Nb-Zr titanium alloy[J]. Chin. J. Nonferrous Met., 2002, 12(S1): 78
[16] Lee E B, Han M K, Kim B J, et al.Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys[J]. Int. J. Mater. Res., 2014, 105: 847
[19] (张新平, 于思荣, 何镇明等. 新型Ti-Fe-Mo-Mn-Nb-Zr系钛合金的力学性能[J]. 中国有色金属学报, 2002, 12(S1): 78)
[17] Wang B L, Zheng Y F, Zhao L C.Effects of Hf content and immersion timeon electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9%NaCl solution[J]. Mater. Corros., 2009, 60: 330
[18] Liu Y, Chen L F, Tang H P, et al.Design of powder metallurgy titanium alloys and composites[J]. Mater. Sci. Eng., 2006, A418: 25
[20] Bolat G, Mareci D, Chelariu R, et al.Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions[J]. Electrochim. Acta, 2013, 113: 470
[21] Hoar T P, Mears D C.Corrosion-resistant alloys in chloride solutions: materials for surgical implants[J]. Proc. Roy. Soc., 1966, 294A: 486
[19] Zhang X P, Yu S R, He Z M, et al.Mechanical properties of new type Ti-Fe-Mo-Mn-Nb-Zr titanium alloy[J]. Chin. J. Nonferrous Met., 2002, 12(S1): 78
[19] (张新平, 于思荣, 何镇明等. 新型Ti-Fe-Mo-Mn-Nb-Zr系钛合金的力学性能[J]. 中国有色金属学报, 2002, 12(S1): 78)
[22] Stern M, Geary A L.Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. J. Electrochem. Soc., 1957, 104: 56
[20] Bolat G, Mareci D, Chelariu R, et al.Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions[J]. Electrochim. Acta, 2013, 113: 470
[23] Majumdar P, Singh S B, Chakraborty M.The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1132
[21] Hoar T P, Mears D C.Corrosion-resistant alloys in chloride solutions: materials for surgical implants[J]. Proc. Roy. Soc., 1966, 294A: 486
[24] Bai Y, Hao Y L, Li S J, et al.Corrosion behavior of biomedical Ti-24Nb-4Zr-8Sn alloy in different simulated body solutions[J]. Mater. Sci. Eng., 2013, C33: 2159
[22] Stern M, Geary A L.Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. J. Electrochem. Soc., 1957, 104: 56
[25] Mohan L, Anandan C.Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr[J]. Appl. Surf. Sci., 2013, 282: 281
[23] Majumdar P, Singh S B, Chakraborty M.The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1132
[26] Narayanan R, Seshadri S K.Point defect model and corrosion of anodic oxide coatings on Ti-6Al-4V[J]. Corros. Sci., 2008, 50: 1521
[24] Bai Y, Hao Y L, Li S J, et al.Corrosion behavior of biomedical Ti-24Nb-4Zr-8Sn alloy in different simulated body solutions[J]. Mater. Sci. Eng., 2013, C33: 2159
[27] Lu J W, Zhao Y Q, Niu H Z, et al.Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications[J]. Mater. Sci. Eng., 2016, C62: 36
[28] Metikos-Hukovi? M, Kwokal A, Piljac J.The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution[J]. Biomaterials, 2003, 24: 3765
[25] Mohan L, Anandan C.Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr[J]. Appl. Surf. Sci., 2013, 282: 281
[26] Narayanan R, Seshadri S K.Point defect model and corrosion of anodic oxide coatings on Ti-6Al-4V[J]. Corros. Sci., 2008, 50: 1521
[27] Lu J W, Zhao Y Q, Niu H Z, et al.Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications[J]. Mater. Sci. Eng., 2016, C62: 36
[28] Metikos-Hukovi? M, Kwokal A, Piljac J.The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution[J]. Biomaterials, 2003, 24: 3765
[1] 张慧, 杜艳霞, 李伟, 路民旭. 不同环境介质中X70钢的交流腐蚀行为及腐蚀产物膜层分析[J]. 金属学报, 2017, 53(8): 975-982.
[2] 王垚,李春福,林元华. Cr对Fe-Cr合金耐蚀性能影响的电子理论研究[J]. 金属学报, 2017, 53(5): 622-630.
[3] 张金睿, 张晏玮, 郝玉琳, 李述军, 杨锐. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究[J]. 金属学报, 2017, 53(10): 1385-1392.
[4] 潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
[5] 郭瑞鹏,徐磊,程文祥,雷家峰,杨锐. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响*[J]. 金属学报, 2016, 52(7): 842-850.
[6] 王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
[7] 韦天国,龙冲生,苗志,刘云明,栾佰峰. Zr-0.4Fe-1.0Cr-x Mo合金在500℃和10.3 MPa水蒸汽中的腐蚀行为[J]. 金属学报, 2013, 49(6): 717-724.
[8] 张金龙,谢兴飞,姚美意,周邦新,彭剑超,梁雪. Zr-1Nb-0.7Sn-0.03Fe-xGe合金在360 ℃ LiOH水溶液中耐腐蚀性能的研究[J]. 金属学报, 2013, 29(4): 443-450.
[9] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[10] 牛云松,魏杰,赵健,胡家秀,于志明. 超声辅助电镀法纳米叠层Ni镀膜的制备与性能[J]. 金属学报, 2013, 49(12): 1617-1622.
[11] 朱莉,姚美意,孙国成,陈文觉,张金龙,周邦新. 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响[J]. 金属学报, 2013, 49(1): 51-57.
[12] 姚美意 邹玲红 谢兴飞 张金龙 彭剑超 周邦新. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响[J]. 金属学报, 2012, 48(9): 1097-1102.
[13] 孙国成 周邦新 姚美意 谢世敬 李强. 锆合金在LiOH水溶液中腐蚀的各向异性研究[J]. 金属学报, 2012, 48(9): 1103-1108.
[14] 许世娇 肖伯律 刘振宇 王文广 马宗义. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能[J]. 金属学报, 2012, 48(7): 882-888.
[15] 胡本芙 刘国权 吴凯 胡鹏辉. 新型镍基粉末冶金高温合金中γ'相扇形组织形成以及演化行为研究[J]. 金属学报, 2012, 48(7): 830-836.