Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 38-46    DOI: 10.11900/0412.1961.2016.00123
  本期目录 | 过刊浏览 |
粉末冶金制备Ti-Fe二元合金的耐腐蚀性能
徐伟1,路新1(),杜艳霞1,孟庆宇2,黎鸣1,曲选辉1
1北京科技大学新材料技术研究院 北京 100083
2北京科技大学冶金与生态工程学院 北京 100083
Corrosion Resistance of Ti-Fe Binary Alloys Fabricated by Powder Metallurgy
Wei XU1,Xin LU1(),Yanxia DU1,Qingyu MENG2,Ming LI1,Xuanhui QU1
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

徐伟,路新,杜艳霞,孟庆宇,黎鸣,曲选辉. 粉末冶金制备Ti-Fe二元合金的耐腐蚀性能[J]. 金属学报, 2017, 53(1): 38-46.
Wei XU, Xin LU, Yanxia DU, Qingyu MENG, Ming LI, Xuanhui QU. Corrosion Resistance of Ti-Fe Binary Alloys Fabricated by Powder Metallurgy[J]. Acta Metall Sin, 2017, 53(1): 38-46.

全文: PDF(2109 KB)   HTML
  
摘要: 

采用粉末冶金模压烧结技术制备了Ti-(2~20)Fe二元合金,探讨了Fe含量对合金的力学性能及耐腐蚀性能的影响,并与铸造CP Ti和Ti-6Al-4V合金的耐腐蚀性能进行了对比。结果表明,随着Fe含量的增加,合金α相含量逐渐降低,β相含量逐渐提高。当Fe含量达到20%时,基本形成单一β相合金。随Fe含量的升高,粉末冶金Ti-(2~20)Fe二元合金的强度及塑性趋于升高,而弹性模量趋于降低。相对而言,Ti-15Fe合金的综合性能最佳,其抗压强度为2702 MPa,压缩率为32.7%,弹性模量为64.6 GPa。随着Fe含量在2%~15%范围内提高,合金的自腐蚀电位正向移动,腐蚀电流密度降低,极化电阻不断增大,腐蚀速率不断降低,耐蚀性能逐渐提高,而Ti-20Fe合金耐腐蚀性能与Ti-15Fe合金接近。Ti-15Fe合金在模拟口腔液(FAS)、磷酸盐缓冲溶液(PBS)、模拟体液(SBF)以及0.9%NaCl溶液(SS)中的腐蚀速率分别为1.7×10-3、7.1×10-4、1.2×10-3和3.5×10-4 mm/y。与铸造CP Ti和Ti-6Al-4V合金相比,Ti-15Fe合金具有较正的自腐蚀电位、较小的腐蚀电流密度和腐蚀速率及较大的极化电阻,耐蚀性能明显优于CP Ti和Ti-6Al-4V合金。

关键词 Ti-Fe二元合金粉末冶金耐腐蚀性能生物医用腐蚀速率    
Abstract

Titanium and its alloys have been widely used in the biomedical field, and have a great potential in making orthopedic implants due to their high specific strength, low elastic modulus, excellent biocompatibility and corrosion resistance in the human body environment. However, important titanium alloys currently used including extra low interstitial (ELI) Ti-6Al-4V (hereafter all in mass fraction, %), Ti-5Al-2.5Fe and Ti-6Al-7Nb are all at risk of releasing toxic Al and V ions in vivo. In addition, the elastic modulus (about 110 GPa) of these alloys are still much higher than those of cortical bones (about 20 GPa), which may bring severe ‘stress shielding’ for implantation failures. In order to solve these problems, much effort has been made to develop Al- and V-free lower-modulus β-Ti alloys. Considering that Fe is one of most effective and low-cost β-phase stabilizing element in titanium, binary Ti-Fe alloys have been selected and an assessment of the potential for biomedical applications has been conducted from the perspectives of their manufacturability, mechanical properties and biocorrosion performance. In this study, Ti-xFe (2%≤x≤20%) alloys were fabricated by powder metallurgy, and their microstructure and compression properties were characterized. In particular, the corrosion properties in four different simulated physiological electrolytes at (37±0.5) ℃ were investigated according to ASTM 59-97, compared with the performances of two commonly used titanium-based materials Ti-6Al-4V and commercially pure (CP) titanium. The results show that the content of β phase gradually increases with Fe content increasing. When Fe content goes up to 20%, the alloy samples are only composed of single β-phase grains. The PM-fabricated Ti-(2~20)Fe alloy is provided with a superior combination of mechanical properties, with the compressive strength range of 2096.2~2702.3 MPa, the compression ratio of 20.6%~33.2% and the elasticity modulus of 62.7~85.5 GPa. Higher Fe content tends to lead to the higher strength and ductility, but lower elastic modulus. In comparison, Ti-15Fe sintered at 1150 ℃ exhibits the superior mechanical properties, including the elastic modulus of 64.6 GPa, the compressive strength of 2702 MPa, and the compression rate of 32.7%. With the rise of Fe content in 2%~15%, the corrosion potential of alloys moves to a positive position, and the corrosion current density decreases, corresponding to the increase in the polarization resistance, which suggests the improvement of their corrosion properties. The binary alloy with 20%Fe possesses the similar corrosion performance to that of Ti-15Fe. The corrosion rates of Ti-15Fe alloy in simulated oral solution (FAS), phosphate buffer solution (PBS), simulated body fluid solution (SBF) and 0.9%NaCl solution (SS) are 1.7×10-3, 7.1×10-4, 1.2×10-3 and 3.5×10-4 mm/y, respectively. Compared with CP Ti and Ti-6Al-4V, Ti-15Fe alloy exhibits a more positive corrosion potential, smaller corrosion current density and higher polarization resistance, indicating a superior corrosion resistance.

Key wordsTi-Fe binary alloy    powder metallurgy    corrosion resistance    biomedical    corrosion rate
收稿日期: 2016-04-07     
基金资助:项目资助 北京市自然科学基金项目No.2163053和北京科技大学新金属材料国家重点实验室开放基金项目No.2012Z-10
图1  Ti-(2~20)Fe二元合金的XRD谱
图2  Ti-(2~20)Fe二元合金显微组织的SEM像
图3  Ti-(2~20)Fe二元合金的力学性能
Alloy FAS PBS SBF SS
Ti-2Fe -361.1±10.8 -405.9±11.6 -420.2±9.8 -302.5±11.1
Ti-5Fe -348.1±11.3 -367.4±9.7 -397.1±9.5 -284.5±10.3
Ti-10Fe -306.4±8.9 -340.1±10.4 -333.5±10.7 -280.3±8.6
Ti-15Fe -286.9±8.2 -280.2±8.8 -168.4±11.6 -43.77±9.4
Ti-20Fe -290.8±10.5 -304.9±8.6 -188.6±10.1 -77.04±10.2
表1  Ti-(2~20)Fe二元合金在不同溶液中自腐蚀电位Ecorr
图4  Ti-(2~20)Fe二元合金在不同溶液中动电位极化曲线
图5  Ti-(2~20)Fe合金在不同溶液中腐蚀电流密度和腐蚀速率
Alloy FAS PBS SBF SS
βa βc Rp βa βc Rp βa βc Rp βa βc Rp
Ωcm-2 Ωcm-2 Ωcm-2 Ωcm-2
Ti-2Fe 293.9±10.8 116.5±5.7 80.6±3.2 470.8±12.3 121.1±10.4 261.7±16.3 351.8±19.5 92.1±9.5 83.5±6.9 477.4±21.5 154.9±5.6 508.5±22.9
Ti-5Fe 305.3±16.5 125.7±9.9 99.3±5.7 323.4±10.8 125.3±7.5 280.5±13.6 302.4±18.4 115.1±5.4 131.2±6.8 422.1±17.6 173.7±8.9 764.3±18.6
Ti-10Fe 278.1±11.2 145.9±8.5 138.7±9.7 263.1±14.5 121.7±7.8 328.9±18.9 285.6±16.2 135.6±8.9 166.6±10.2 403.5±12.6 175.5±9.9 886.3±26.9
Ti-15Fe 282.3±15.3 168.5±11.2 229.4±17.4 168.7±10.5 145.1±8.8 423.9±21.2 115.6±7.6 188.4±8.2 222.5±14.6 166.7±8.7 211.3±9.9 1012.9±45.6
Ti-20Fe 265.4±14.6 146.2±6.8 227.7±7.9 202.5±10.9 141.4±13.6 517.1±15.9 225.8±11.2 156.7±10.6 268.1±16.4 165.2±6.9 199.5±10.8 982.3±35.9
表2  Ti-(2~20)Fe合金阴阳极Tafel区斜率(βc和βa)及极化电阻Rp
图6  纯Ti、Ti-6Al-4V和Ti-15Fe合金在4种不同溶液中的动电位极化曲线
Alloy FAS PBS SBF SS
Pure Ti -368.4±11.2 -366±12.6 -380±19.5 -372.9±15.4
Ti-6Al-4V -374.6±11.3 -414±11.5 -433±19.1 -379±11.8
Ti-15Fe -286.9±8.2 -280.2±8.8 -168.4±11.6 -43.77±9.4
表3  纯Ti、Ti-6Al-4V及Ti-15Fe合金的自腐蚀电位Ecorr
图7  纯Ti、Ti-6Al-4V合金及Ti-15Fe合金在不同溶液中的腐蚀电流密度和腐蚀速率
Alloy FAS PBS SBF SS
βa βc Rp
Ωcm-2
βa βc Rp
Ωcm-2
βa βc Rp
Ωcm-2
βa βc Rp
Ωcm-2
CP Ti 685.9±26.9 301.2±13.5 66.4±7.8 444.1±26.8 318.6±16.5 103.4±8.5 308.6±15.9 171.8±10.2 36.4±4.6 525.7±26.4 195.6±6.9 98.3±4.3
Ti-6Al-4V 675.1±26.5 287.1±12.8 66.3±5.6 360.9±9.8 212.1±11.6 89.4±5.9 296.8±10.6 205.4±12.6 29.4±3.6 338.8±14.3 171.8±12.6 95.3±9.9
Ti-15Fe 282.3±15.3 168.5±11.2 229.4±17.4 168.7±10.5 145.1±8.8 423.9±21.2 115.6±7.6 188.4±8.2 222.5±14.6 166.7±8.7 211.3±9.9 1012.9±45.6
表4  纯Ti、Ti-6Al-4V合金及Ti-15Fe合金的βc、βa和Rp
[1] Li Y Y, Zou L M, Yang C.Fabrication of biomedical Titanium alloys with high strength and low modulus by means of powder metallurgy[J]. J. South China Univ. Technol.: Nat. Sci. Ed., 2012, 40(10): 43
[1] (李元元, 邹黎明, 杨超. 粉末冶金法合成高强低模超细晶医用钛合金[J]. 华南理工大学学报(自然科学版), 2012, 40(10): 43)
[2] Zhao X F, Niinomi M, Nakai M, et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 1990
[3] Mohammadi S, Wictorin L, Ericsonetal L E, et al.Cast titanium as implant material[J]. J. Mater. Sci.: Mater. Med., 1995, 6: 435
[4] Wang K.The use of titanium for medical applications in the USA[J]. Mater. Sci. Eng., 1996, A213: 134
[5] Niinomi M, Kuroda D, Fukunaga K, et al.Corrosion wear fracture of new β type biomedical titanium alloys[J]. Mater. Sci. Eng., 1999, A263: 193
[6] Chen B Y, Hwang K S, Ng K L.Effect of cooling process on the α phase formation and mechanical properties of sintered Ti-Fe alloys[J]. Mater. Sci. Eng., 2011, A528: 4556
[7] Jin Q, Li Q, Wang X Y.Study of Ti-Fe alloy preparation with powder metallurgy method[J]. J. Liaoning Inst. Technol.: Nat. Sci. Ed., 2015, 35(2): 120
[7] (金秋, 李强, 王新宇. 粉末冶金法制备Ti-Fe系合金的研究[J]. 辽宁工业大学学报(自然科学版), 2015, 35(2): 120)
[8] Meng Q Y, Lu X, Xu W, et al.Microstructure and mechanical properties of powder metallurgy Ti-Fe alloys[J]. Trans. Mater. Heat Treat., 2016, 37(8): 36
[8] (孟庆宇, 路新, 徐伟等. 粉末冶金Ti-Fe合金的显微组织及力学性能[J]. 材料热处理学报, 2016, 37(8): 36)
[9] Dewidar M M, Khalil K A, Lim J K.Processing and mechanical properties of porous 316L stainless steel for biomedical applications[J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 468
[10] Yu H, Wegehaupt F J, Wiegand A, et al.Erosion and abrasion of tooth-colored restorative materials and human enamel[J]. J. Dent., 2009, 37: 913
[11] Liu Y, Chen L F, Tang H P, et al.Design of powder metallurgy titanium alloys and composites[J]. Mater. Sci. Eng., 2006, A418: 25
[12] Wang M, Song X P.Study actuality of corrosion, mechanical compatibility and biocompatibility of Titanium alloys for medical application[J]. Titanium Ind. Prog., 2008, 25(2): 13
[12] (王明, 宋西平. 医用钛合金腐蚀、力学相容性和生物相容性研究现状[J]. 钛工业发展, 2008, 25(2): 13)
[13] Majima K, Hirata T, Yamamoto M, et al.Tensile properties and corrosion behavior of hot isostatically pressed Ti-Fe alloy[J]. Nippon Kinzoku Gakkai-si, 1998, 52: 1113
[14] Solar R J, Pollack S R, Korostoff E.Titanium release from implants: a proposed mechanism [A]. Corrosion and Degradation of Implant Materials[C]. Philadelphia, PA: ASTM, 1979: 161
[15] Arcella F G, Froes F H.Producing titanium aerospace components from powder using laser forming[J]. JOM, 2000, 52(5): 28
[16] Lee E B, Han M K, Kim B J, et al.Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys[J]. Int. J. Mater. Res., 2014, 105: 847
[17] Wang B L, Zheng Y F, Zhao L C.Effects of Hf content and immersion timeon electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9%NaCl solution[J]. Mater. Corros., 2009, 60: 330
[18] Liu Y, Chen L F, Tang H P, et al.Design of powder metallurgy titanium alloys and composites[J]. Mater. Sci. Eng., 2006, A418: 25
[19] Zhang X P, Yu S R, He Z M, et al.Mechanical properties of new type Ti-Fe-Mo-Mn-Nb-Zr titanium alloy[J]. Chin. J. Nonferrous Met., 2002, 12(S1): 78
[19] (张新平, 于思荣, 何镇明等. 新型Ti-Fe-Mo-Mn-Nb-Zr系钛合金的力学性能[J]. 中国有色金属学报, 2002, 12(S1): 78)
[20] Bolat G, Mareci D, Chelariu R, et al.Investigation of the electrochemical behaviour of TiMo alloys in simulated physiological solutions[J]. Electrochim. Acta, 2013, 113: 470
[21] Hoar T P, Mears D C.Corrosion-resistant alloys in chloride solutions: materials for surgical implants[J]. Proc. Roy. Soc., 1966, 294A: 486
[22] Stern M, Geary A L.Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. J. Electrochem. Soc., 1957, 104: 56
[23] Majumdar P, Singh S B, Chakraborty M.The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1132
[24] Bai Y, Hao Y L, Li S J, et al.Corrosion behavior of biomedical Ti-24Nb-4Zr-8Sn alloy in different simulated body solutions[J]. Mater. Sci. Eng., 2013, C33: 2159
[25] Mohan L, Anandan C.Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr[J]. Appl. Surf. Sci., 2013, 282: 281
[26] Narayanan R, Seshadri S K.Point defect model and corrosion of anodic oxide coatings on Ti-6Al-4V[J]. Corros. Sci., 2008, 50: 1521
[27] Lu J W, Zhao Y Q, Niu H Z, et al.Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications[J]. Mater. Sci. Eng., 2016, C62: 36
[28] Metikos-Hukovi? M, Kwokal A, Piljac J.The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution[J]. Biomaterials, 2003, 24: 3765
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[3] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[4] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[6] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[7] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[8] 毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
[9] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[10] 宋芊汀, 徐映坤, 徐坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56(11): 1507-1520.
[11] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[12] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[13] 马国楠, 王东, 刘振宇, 毕胜, 昝宇宁, 肖伯律, 马宗义. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响[J]. 金属学报, 2019, 55(10): 1319-1328.
[14] 秦润之, 杜艳霞, 路民旭, 欧莉, 孙海明. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究[J]. 金属学报, 2018, 54(6): 886-894.
[15] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.