Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1557-1564    DOI: 10.11900/0412.1961.2016.00113
  本期目录 | 过刊浏览 |
一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*
欧美琼1,2,刘扬3,查向东1,马颖澈1,4(),程乐明3,刘奎1
1 中国科学院金属研究所, 沈阳 110016
2 中国科学技术大学材料科学与工程学院, 合肥 230026
3 新奥科技发展有限公司煤基低碳能源国家重点实验室, 廊坊 065001
4 江苏图南合金股份有限公司, 丹阳 212352
CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS
Meiqiong OU1,2,Yang LIU3,Xiangdong ZHA1,Yingche MA1,4(),Leming CHENG3,Kui LIU1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3 State Key Laboratory of Coal-Based Low Carbon Energy, ENN Science and Technology Development Co., Ltd. Langfang 065001, China
4 Jiangsu Toland Alloy Co., Danyang 212352, China
引用本文:

欧美琼,刘扬,查向东,马颖澈,程乐明,刘奎. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为*[J]. 金属学报, 2016, 52(12): 1557-1564.
Meiqiong OU, Yang LIU, Xiangdong ZHA, Yingche MA, Leming CHENG, Kui LIU. CORROSION BEHAVIOR OF A NEW NICKEL BASE ALLOY IN SUPERCRITICAL WATERCONTAINING DIVERSE IONS[J]. Acta Metall Sin, 2016, 52(12): 1557-1564.

全文: PDF(4107 KB)   HTML
  
摘要: 

研究一种新型镍基合金X-1#在550 ℃, 23 MPa含PO43-, Cl-和SO42-超临界水中分别腐蚀72, 159, 248, 429和537 h的腐蚀特性. 结合SEM, EDS, XRD和XPS等分析测试方法研究了X-1#合金氧化膜和反应釜沉积物的形貌、物相组成和元素成分分布等. 结果表明, X-1#合金在该环境下形成了均匀和完整的氧化膜, 氧化膜由疏松外层和致密内层组成, 外层主要包含NiO, Ni(OH)2和磷酸盐, 内层由NiCr2O4和Cr2O3组成. 腐蚀初始阶段腐蚀速率较快, 248 h后腐蚀速率明显下降, 这是由于氧化膜内层稳定性好且连续致密分布, 有利于X-1#合金抗高温氧化腐蚀.

关键词 镍基合金,超临界水氧化,氧化膜,磷酸盐    
Abstract

The productivity of municipal sewage sludge is difficult to treat by traditional methods. Supercritical water oxidation (SCWO) is an attractive municipal sewage sludge treatment technology. However, the process of SCWO must be carried out in a reactor which will resist not only high temperature (above 374.15 ℃) and high pressure (above 22.1 MPa) conditions but also a corrosive environment. Thus, the material used in the equipment is referred to be a key factor that restricts the application of the SCWO technology. Many materials have been selected for corrosion test under corrosive environments with SCWO, including austenitic stainless steel, nickel base alloys, titanium alloys and zirconium alloys. At present, in order to treat rich phosphorous sewage sludge, a new corrosion resistant nickel base alloy X-1# alloy has been developed to apply to the reactor of SCWO process. X-1# alloy has excellent corrosion-resistance and oxidation-resistance properties in supercritical water containing PO43-, Cl- and SO42-. The corrosion behaviors of X-1# alloy exposed to 550 ℃, 23 MPa supercritical water containing PO43-, Cl- and SO42- were investigated in this research. The exposed time was 72, 159, 248, 429 and 537 h. Morphologies, microstructures and chemical composition of oxide films in X-1# alloy and deposit sediment in reaction were studied using grazing incidence XRD, XPS and SEM equipped with EDS. The XRD, EDS and XPS analysis of X-1# alloy was performed to identify the composition of oxide layers, which were identified as NiCr2O4, Cr2O3, NiO, Ni3(PO4)2, CrPO4 and Na3PO4. In addition, it was founded that continuous and uniform oxide films were formed in supercritical water. The oxide film was a duplex-layer structure, the loose outer layer was NiO, Ni(OH)2 and phosphates, including Ni3(PO4)2, CrPO4 and Na3PO4, while the compact inner layer consisted of NiCr2O4 and Cr2O3. X-1# alloy showed a high corrosion rate in the initial stage and the corrosion rate decreased obviously after exposed to 248 h, the reason of which was that the compact inner layer of oxide films had good stability and benefited to the corrosion behavior of X-1# alloy. In order to explain the corrosion behavior of X-1# alloy, the oxide films growth mechanical, metal ions and oxygen ions dissolution mechanism and phosphates precipitation mechanism will be discussed in this research.

Key wordsnickel base alloy,    supercritical water oxidation (SCWO),    oxide film,    phosphate
收稿日期: 2016-04-01     
图1  X-1#合金腐蚀537 h的氧化膜的XRD谱
图2  X-1#合金腐蚀72, 159, 248, 429 和537 h 的氧化膜表面形貌的SEM像
Product Mark O Ni Cr Fe P Na Ti Oxide
Fine particle A 25.77 33.47 13.11 15.26 1.27 1.83 1.15 NiCr2O4, Cr2O3
Loose particle B 27.56 26.95 1.83 1.95 17.44 16.51 0.29 Ni(OH)2, NiO, Na3PO4,
Ni3(PO4)2, CrPO4
Geometric square C 26.02 11.56 10.02 1.96 23.09 12.73 8.37 Ni(OH)2, NiO, Na3PO4,
Ni3(PO4)2, CrPO4
表1  X-1#合金表面氧化膜的EDS分析结果
图3  反应釜沉积物表面形貌的SEM像
Product Mark O Ni Cr Fe P Na Mo Oxide
Blocky D 21.16 37.67 8.97 1.13 0.60 7.26 17.18 NiO, Ni(OH)2, NiCr2O4, Cr2O3, MoO2
Slice E 19.89 38.67 9.83 0.88 0.99 6.01 18.25 NiO, Ni(OH)2, NiCr2O4, Cr2O3, MoO2
Rod F 34.64 20.36 2.80 1.43 14.60 20.52 - Na3PO4, Ni3(PO4)2, CrPO4
表2  反应釜沉积物的EDS分析结果
图4  反应釜中沉积物的XPS分析
图5  X-1#合金腐蚀72, 159, 248, 429和537 h试样的氧化膜截面形貌的SEM像
图6  X-1#合金腐蚀159和248 h试样的氧化膜截面成分分布
[1] Chen Z, Wang G W, Yin F J, Chen H Z, Xu Y J.Chem Eng J, 2015; 269: 343
[2] Kritzer P, Dinjus E.Chem Eng J, 2001; 83: 207
[3] Kritzer P.J Supercrit Fluids, 2004; 29: 1
[4] Zhang Q, Tang R, Yin K J, Luo X, Zhang L F.Corros Sci, 2009; 51: 2092
[5] Chang K H, Huang J H, Yan C B, Yeh T K, Chen F R, Kai J J.Prog Nucl Energy, 2012; 57: 20
[6] Tang X Y, Wang S Z, Qian L L, Li Y H, Lin Z H, Xu D H, Zhang Y P.Chem Eng Res Des, 2015; 100: 530
[7] Mitton D B, Orzalli J C, Latanision R M.ACS Symp Ser, 1995; 608: 327
[8] Kim H J, Mitton D B, Latanision R M.Corros Sci, 2010; 52: 801
[9] Marrone P A, Hong G T.J Supercrit Fluids, 2009; 51: 83
[10] Gao X, Wu X Q, Zhang Z E, Guan H, Han E H.J Supercrit Fluids, 2007; 42: 157
[11] Tan L, Ren X, Sridharan K, Allen T R.Corros Sci, 2008; 50: 3056
[12] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309
[13] Ma Y C, Zhao X J, Gao M, Liu K.J Mater Sci Technol, 2011; 27: 841
[14] Zhao X, Zha X D, Liu Y, Zhang L, Liang T, Ma Y C, Cheng L M.Acta Metall Sin, 2015; 51: 249
[14] (赵霞, 查向东, 刘扬, 张龙, 梁田, 马颖澈, 程乐明. 金属学报, 2015; 51: 249)
[15] Ren X, Sridharan K, Allen T R.Corrosion, 2007; 63: 603
[16] Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M.J Nucl Sci Technol, 2003; 40: 509
[17] Chang K H, Chen S M, Yeh T K, Kai J J.Corros Sci, 2014; 81: 21
[18] Otsuka N, Fujikawa H.Corrosion, 1991; 47: 240
[19] Li H F, Fan H Y, Zhang Q, Qiu S Y, Wang J.Nucl Power Eng, 2011; 32(3): 38
[19] (李海丰, 范洪远, 张强, 邱绍宇, 王均. 核动力工程, 2011; 32(3): 38)
[20] Liu Z H, Fang L, Tao H C.J Northeast Agric Univ, 2012; 43: 108
[20] (刘振华, 方琳, 陶虎春. 东北农业大学学报, 2012; 43: 108)
[21] Zhu W, Xu Z R, Li L, He C.Chem Eng J, 2011; 171: 190
[22] Machet A, Galtayries A, Marcus P, Combrade P, Jolivet P, Scott P.Surf Interface Anal, 2002; 34: 197
[23] Biesinger M C, Brown C, Mycroft J R, Davidson R D, Mclntyre N S.Surf Interface Anal, 2004; 36: 1550
[24] Zhang L, Han E-H, Zhang Z E, Guan H, Ke W.Acta Metall Sin, 2003; 39: 649(张丽, 韩恩厚, 张召恩, 关辉, 柯伟. 金属学报, 2003; 39: 649)
[25] Xu D H, Wang S Z, Zhang F, Huang C B, Tang X Y, Guo Y.Chem Ind Eng Prog, 2014; 33: 1015(徐东海, 王树众, 张峰, 黄传宝, 唐兴颖, 郭洋. 化工进展, 2014; 33: 1015)
[26] Zhong X Y, Wu X Q, Han E-H.Acta Metall Sin, 2011; 47: 932
[26] (钟祥玉, 吴欣强, 韩恩厚. 金属学报, 2011; 47: 932)
[27] Ziemniak S E, Hanson M.Corros Sci, 2003; 45: 1595
[28] Tan L, Ren X, Sridharan K, Allen T R.Corros Sci, 2008; 50: 2040
[1] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[2] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[3] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[4] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[6] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[7] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[8] 王迪, 王栋, 谢光, 王莉, 董加胜, 陈立佳. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响[J]. 金属学报, 2021, 57(6): 780-790.
[9] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.
[10] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.
[11] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[12] 李克俭, 张宇, 蔡志鹏. 异种金属焊接接头在热-力耦合作用下的断裂位置转移机理[J]. 金属学报, 2020, 56(11): 1463-1473.
[13] 包飞洋, 李艳芬, 王光全, 张家榕, 严伟, 石全强, 单以银, 杨柯, 许斌, 宋丹戎, 严明宇, 魏学栋. ODS钢在600700 ℃静态Pb-Bi共晶中的腐蚀行为及机理[J]. 金属学报, 2020, 56(10): 1366-1376.
[14] 王资兴,黄烁,张北江,王磊,赵光普. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019, 55(3): 417-426.
[15] 张笑一, 尚海龙, 马冰洋, 李荣斌, 李戈扬. 镀膜Al箔钎料对AlN陶瓷的钎焊[J]. 金属学报, 2018, 54(4): 575-580.