Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1403-1412    DOI: 10.11900/0412.1961.2016.00103
  本期目录 | 过刊浏览 |
Ti/Al异种合金接头原位拉伸应变场及断裂行为的研究*
许志武1,马志鹏1,2,闫久春1,张誉喾2,张旭昀2
1 哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨 150001
2 东北石油大学材料科学与工程系, 大庆 163318
STRAIN FIELD AND FRACTURE BEHAVIOR OF Ti/Al DISSIMILAR ALLOY JOINT UNDER IN SITU TENSILE TEST
Zhiwu XU1,Zhipeng MA1,2,Jiuchun YAN1,Yuku ZHANG2,Xuyun ZHANG2
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Department of Materials Science and Engineering, Northeast Petroleum University, Daqing 163318, China
引用本文:

许志武,马志鹏,闫久春,张誉喾,张旭昀. Ti/Al异种合金接头原位拉伸应变场及断裂行为的研究*[J]. 金属学报, 2016, 52(11): 1403-1412.
Zhiwu XU, Zhipeng MA, Jiuchun YAN, Yuku ZHANG, Xuyun ZHANG. STRAIN FIELD AND FRACTURE BEHAVIOR OF Ti/Al DISSIMILAR ALLOY JOINT UNDER IN SITU TENSILE TEST[J]. Acta Metall Sin, 2016, 52(11): 1403-1412.

全文: PDF(1387 KB)   HTML
  
摘要: 

采用Zn-Al钎料超声辅助钎焊连接了钛合金与铝合金, 利用OM, SEM, EDS和TEM分析了钎焊接头的微观组织. 利用数字图像相关(DIC)方法分析了Ti/Al钎焊接头在原位拉伸过程中应变变化及裂纹扩展情况. 结果表明, 在钛合金/钎缝界面上有2种化合物, 分别为Ti7Al5Si12和TiAl3, 而在铝合金/钎缝界面上存在一层Zn-Al扩散层, 钎缝组织由富Zn相和Zn-Al共析组织构成. 原位拉伸过程中, 钎焊接头整体应变较低, 局部高应变区呈条纹状形态分布, 接头没有发生明显屈服过程, 只有弹性变形和塑性变形阶段. 在应变相对较大的富Zn相内部产生最大应力且出现裂纹, 裂纹曲析扩展最后呈锯齿状断裂.

关键词 Ti/Al异种合金,原位拉伸,应变场,断裂行为    
Abstract

The prospect of joining titanium and aluminum components into structures is desirable for a wide range of aerospace and automobile industry applications. One of the problems related with the joining processes for dissimilar metals such as Ti and Al is the formation of residual stress in the bonded joint, which has significant effect on the joint mechanical properties. In this work, joining of a titanium alloy to an aluminum alloy by ultrasonic assisted brazing using a Zn-Al filler metal was investigated. The microstructures of the titanium/aluminum brazed joints were determined by OM, SEM and TEM. The local tensile deformation characteristics of the brazed joints were also examined using the digital image correlation (DIC) methodology by mapping the local strain distribution during in situ tensile tests. The results showed that the Ti7Al5Si12 phase and the TiAl3 phase were formed at the titanium/brazing seam interface. The brazing seam was primarily composed of a Zn-rich phase and a Zn-24.14%Al (mass fraction) eutectoid structure. At the aluminum/brazing seam interface, no interfacial reaction layer was observed and the primary phase Zn-Al dendrites nucleated at the aluminum base metal and grew into the inside of the bonding region. A diffusion layer was formed in the aluminum base metal. It was found that the tensile deformation of the brazed joints was highly heterogeneous, which led to the deflection of the crack during propagating in the joint. The fracture initiated at the Zn-rich phases, where contained the highest stress concentration due to their low elastic modulus, and propagated in the Zn-rich phases or through the interface between Zn-rich phase and Zn-Al eutectoid structure.

Key wordsTi/Al    dissimilar    alloy,    in    situ    tensile,    strain    field,    fracture    behavior
收稿日期: 2016-03-28     
基金资助:* 国家自然科学基金项目51075104和50905044资助
图1  超声辅助钎焊方法的示意图
图2  原位拉伸试样宏观形貌
Position Zn Al Ti Si Possible phase
1 97.87 1.56 - 0.57 Zn rich phase
2 75.49 24.14 - 0.37 Zn-Al eutectoid structure
3 14.66 14.84 44.50 26.00 Ti7Al5Si12
4 14.12 54.21 28.28 3.39 TiAl3
表1  图3中不同位置EDS分析结果
图3  Ti/Al钎焊接头显微组织的SEM和TEM像及钛合金侧界面区显微组织的SEM像及SAED花样
图4  Ti/Al钎焊接头载荷与伸长量曲线
图5  Ti/Al钎焊接头中典型的裂纹路径和局部放大裂纹及Ti侧断口形貌
Phase Elastic modulus Nano-indentation hardness
Zn-Al eutectoid structure 106~108 1.50~1.56
Zn rich phase 89~94 1.39~1.43
表2  Ti/Al钎焊接头中组织的纳米硬度和弹性模量
图6  不同载荷作用下Ti/Al钎焊接头同一位置处显微组织的SEM-BSE像
图7  载荷为200 N时拉伸方向和垂直拉伸方向Ti/Al钎焊接头2D和3D应变分布
图9  载荷为480 N时拉伸方向和垂直拉伸方向Ti/Al钎焊接头2D和3D应变分布
图8  载荷为400 N时拉伸方向和垂直拉伸方向Ti/Al钎焊接头2D和3D应变分布
图10  不同载荷作用下Ti/Al钎焊接头SEM-BSE像与应变图的复合图
图11  Ti/Al钎焊接头中裂纹扩展及偏转示意图
[1] Vaidya W V, Horstmann M, Ventzke V, Petrovski B, Koak M, Kocik R, Tempus G.J Mater Sci, 2010; 45: 6242
[2] Chen S H, Li L Q, Chen Y B, Liu D J.Trans Nonferrous Met Soc China, 2010; 20: 64
[3] Sohn W H, Bong H H, Hong S H.Mater Sci Eng, 2003; A355: 231
[4] Yao W, Wu A P, Zou G S, Ren J L.Mater Lett, 2008; 62: 2836
[5] AlHazaa A, Khan T I, Haq I. Mater Charact, 2010; 61: 312
[6] Chen X G, Yan J C, Gao F, Wei J H, Xu Z W, Fan G H.Ultrason Sonochem, 2013; 20: 144
[7] Chang S Y, Tsao L C, Lei Y H, Mao S M, Huang C H. J Mater Process Technol, 2012; 212: 8
[8] Ma Z P, Wang C W, Yu H C, Yan J C, Shen H R.Mater Des, 2013; 45: 72
[9] Chen Y C, Nakata K.Mater Des, 2009; 30: 469
[10] Bang H S, Bang H S, Song H J, Joo S M.Mater Des, 2013; 51: 544
[11] Yang D, Hodgson P, Wen C E.Intermetallics, 2009; 17: 727
[12] Lv S X, Huang Y X, Yang T, Shi J W, Jing X J.Rev Adv Mater Sci, 2013; 33: 396
[13] Liu C, Dong C L.Trans Nonferrous Met Soc China, 2014; 24: 1387
[14] Xiao G S, Yang X X, Yuan G Z, Li Z G, Shu X F.Mater Des, 2015; 88: 520
[15] Zhang Q K, Zhang Z F.Scr Mater, 2012; 67: 289
[16] Yamaguchi I.J Phys, 1981; 14E: 1270
[17] Peters W H, Ranson W F.Opt Eng, 1982; 21: 427
[18] Saranath K M, Ramji M.Opt Laser Eng, 2015; 68: 222
[19] Cai Y L, Fu S H, Wang Y H, Tian C G, Gao Y, Cheng T, Zhang Q C.Acta Metall Sin, 2014; 50: 1491
[19] (蔡玉龙, 符师桦, 王玉辉, 田成刚, 高越, 程腾, 张青川. 金属学报, 2014; 50: 1491)
[20] Chen J L, Zhan N, Zhang X C, Wang J X.Opt Laser Eng, 2015; 65: 103
[21] Morgeneyer T F, Helfen L, Mubarak H, Hild F.Exp Mech, 2013; 53: 543
[22] Lee H, Kim C, Song J H.Materials, 2015; 8: 8424
[23] He Y M, Sun Y, Zhang J, Li X D.J Eur Ceram Soc, 2013; 33: 157
[24] Lei M K, Xu Z C, Yang F J, Gao F.Acta Metall Sin, 2004; 40: 1104
[24] (雷明凯, 徐忠成, 杨辅军, 高峰. 金属学报, 2004; 40: 1104)
[25] Yang Q S, Yang W.Acta Mecha Sin, 1997; 29: 355
[25] (杨庆生, 杨卫. 力学学报, 1997; 29: 355)
[1] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[2] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[3] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[4] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[5] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[6] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[7] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[8] 石晶,郭振玺,隋曼龄. a-Ti在原位透射电镜拉伸变形过程中位错的滑移系确定*[J]. 金属学报, 2016, 52(1): 71-77.
[9] 武会宾, 武凤娟, 杨善武, 唐荻. 微米/亚微米双峰尺度奥氏体组织形成机制*[J]. 金属学报, 2014, 50(3): 269-274.
[10] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[11] 郑君姿,张来启,侯永明,马向玲,林均品. β-γNb-TiAl合金准等温锻造过程模拟[J]. 金属学报, 2013, 49(11): 1439-1444.
[12] 刘东升 程丙贵 陈圆圆. 低C含Cu NV-F690特厚钢板的精细组织和强韧性[J]. 金属学报, 2012, 48(3): 334-342.
[13] 李时磊 王西涛 王艳丽 李树肖. 热老化对Z3CN20-09M不锈钢微区力学性能和冲击断裂行为的影响[J]. 金属学报, 2011, 47(6): 751-756.
[14] 刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.
[15] 沈连成; 何健英; 宿彦京; 褚武扬; 乔利杰 . Ni2MnGa铁磁形状记忆合金开裂的原位研究[J]. 金属学报, 2006, 42(8): 810-814 .