Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1491-1496    DOI: 10.11900/0412.1961.2016.00098
  本期目录 | 过刊浏览 |
Mg96.17Zn3.15Y0.5Zr0.18合金高压下固溶处理时效硬化研究*
樊志斌,林小娉(),董允,叶杰,李婵,李博
东北大学材料科学与工程学院, 沈阳 110819
AGE-HARDENING RESPONSE FOR Mg96.17Zn3.15Y0.5Zr0.18 SOLID SOLUTION ALLOY UNDER HIGH PRESSURE
Zhibin FAN,Xiaoping LIN(),Yun DONG,Jie YE,Chan LI,Bo LI
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

樊志斌, 林小娉, 董允, 叶杰, 李婵, 李博. Mg96.17Zn3.15Y0.5Zr0.18合金高压下固溶处理时效硬化研究*[J]. 金属学报, 2016, 52(12): 1491-1496.
Zhibin FAN, Xiaoping LIN, Yun DONG, Jie YE, Chan LI, Bo LI. AGE-HARDENING RESPONSE FOR Mg96.17Zn3.15Y0.5Zr0.18 SOLID SOLUTION ALLOY UNDER HIGH PRESSURE[J]. Acta Metall Sin, 2016, 52(12): 1491-1496.

全文: PDF(2566 KB)   HTML
  
摘要: 

在4 GPa 高压下对Mg96.17Zn3.15Y0.5Zr0.18合金进行600~800 ℃固溶处理, 之后在200 ℃进行等温时效处理. 利用TEM, HRTEM, SEM, XRD等分析方法研究了高压固溶及随后时效处理后合金的显微组织, 并测试了4 GPa高压下固溶处理后合金的时效硬化曲线. 结果表明, 在4 GPa高压下固溶能大幅提高 Zn 在Mg基体中的溶解度, Zn的溶解度由常压下400 ℃固溶后的2.11% (质量分数,下同) 提高到4 GPa高压下700~800 ℃固溶后的约6.60%, 获得了过饱和α-Mg 固溶体. 在随后的200 ℃温时效过程中, 高压固溶合金在较短的时间内即可获得较高的近峰值硬度, 4 GPa下800 ℃固溶的合金近峰值时效硬度高达105 HV, 比400 ℃固溶处理合金近峰时效硬度(81 HV)提高了约30%. HRTEM观察表明, 4 GPa高压下固溶合金时效沉淀析出相具有很高的析出密度, 且析出相中含有粒状准晶I-Mg3Zn6Y相.

关键词 Mg96.17Zn3.15Y0.5Zr0.18合金,高压固溶,溶解度,时效硬化,粒状准晶相    
Abstract

Rare-earth (RE) element addition can remarkably improve the mechanical properties of magnesium alloys through solid solution and age-hardening. Increasing the solubility in the Mg matrix and enhancing the precipitation density are effective measures to improve ageing strengthening of magnesium alloys. In this work, solid solution treatment at 600~800 ℃ under 4 GPa, and then isothermal ageing at 200 ℃ for Mg96.17Zn3.15Y0.5Zr0.18 alloy was carried out. The microstructures of the high pressure solution treatment Mg96.17Zn3.15Y0.5Zr0.18 alloy before and after ageing were investigated by TEM, HRTEM, SEM and XRD, and age-hardening curves of Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment under the high pressure of 4 GPa have been tested. The results show that, as the rise of the solution treatment temperature, I-Mg3Zn6Y and W-Mg3Zn3Y2 continually dissolved into the Mg matrix, and the solubility of Zn in the Mg matrix drastically improved after solution treatment under the high pressure of 4 GPa. The solubility of Zn in the Mg matrix reached up to 6.60% (mass fraction) after solution treatment at 700~800 ℃ under the high pressure of 4 GPa than 2.11% after solution treatment at 400 ℃ under the atmosphere, and the supersaturated solid solution α-Mg has been attained. After ageing treatment at 200 ℃, the peak hardness of Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment under the high pressure of 4 GPa could been reached in short ageing time, the peak hardness of the Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment at 800 ℃ under 4 GPa was 105 HV, which was increased by 30% than 81 HV of the alloy after solution treatment at 400 ℃ under the atmosphere. HRTEM analysis results indicated that the high precipitation density was found in the Mg96.17Zn3.15Y0.5Zr0.18 alloy after solution treatment under the high pressure of 4 GPa, and some of precipitation were particle quasicrystal I-Mg3Zn6Y phases.

Key wordsMg96.17Zn3.15Y0.5Zr0.18    alloy,    solution    treatment    under    high    pressure,    solubility,    age-hardening,    granular    quasicrystal    phase
收稿日期: 2016-03-24     
基金资助:* 国家自然科学基金项目51675092和51475486及河北省自然科学基金项目E2014501123资助
图1  400 ℃固溶处理和4 GPa高压下不同温度固溶处理后Mg96.17Zn3.15Y0.5Zr0.18合金显微组织的SEM像
图2  400 ℃固溶处理和4 GPa高压下不同温度固溶处理后Mg96.17Zn3.15Y0.5Zr0.18合金的XRD谱
图3  4 GPa高压下800 ℃固溶Mg96.17Zn3.15Y0.5 Zr0.18合金晶界第二相形貌及EDS分析结果
图4  Zn元素在Mg基体中的分布
图5  400 ℃固溶和4 GPa高压下不同温度固溶Mg96.17Zn3.15Y0.5Zr0.18合金200 ℃等温时效硬化曲线
图6  400 ℃和4 GPa高压下800 ℃固溶Mg96.17Zn3.15Y0.5Zr0.18合金200 ℃等温时效达到近峰值硬度时显微组织的TEM像、HRTEM像及Fourier变换图
[1] Ding W J.Science and Technology of Magnesium Alloys. Beijing: Science Press, 2007: 98
[1] (丁文江. 镁合金科学与技术. 北京: 科学出版社, 2007: 98)
[2] Song W X.Metallography. Beijing: Metallurgical Industry Press, 1989: 60
[2] (宋维锡. 金属学. 北京:冶金工业出版社, 1989: 60)
[3] Liang Y, Huang X F, Wang T, Cao X J, Zhu K.China Foundry Machine Technol, 2009; (1): 8
[3] (梁艳, 黄晓锋, 王韬, 曹喜娟, 朱凯. 中国铸造装备与技术, 2009; (1): 8)
[4] Gao X, Nie J F.Scr Mater, 2007; 56: 645
[5] Buha J.Mater Sci Eng, 2008; A492: 11
[6] Clark J B.Aata Metall, 1965; 13: 1281
[7] Sturkey L, Clark J B.Inst Met, 1959; 88: 177
[8] Chen J Q, Liu J W.Mater Rev, 2008; 22: 342
[8] (陈敬区, 刘江文. 材料导报, 2008; 22: 342)
[9] Wang X L, Li C R, Guo C P, Du Z M, He W.Acta Metall Sin, 2010; 46: 575
[9] (王晓亮, 李长荣, 郭翠萍, 杜振民, 何维. 金属学报, 2010; 46: 575)
[10] Dong Y, Lin X P, Ye J, Zhao T B, Fan Z B.Mater Sci Eng, 2015; A636: 600
[11] Buha J.Mater Sci Eng, 2008; A491: 70
[12] Chen J G, Sun Y, Zhang J S, Cheng W L, Niu X F, Xu C X.J Magn Alloy, 2015; 3: 121
[13] Li X M, Starink M J.J Alloys Compd, 2011; 509: 471
[14] Jiang T J, Xiao W Q, Yang L, Shao W Z, Yuan S J, Zhen L.Mater Sci Eng, 2014; A605: 167
[15] Shi G L, Zhang D F, Zhang H J, Zhao X B, Qi F G, Zhang K.Trans Nonferrous Met Soc China, 2013; 23: 586
[16] Zhao J, Li J M, Zhao L M, Yin S, Chen J C, Wen Q X.Rare Met, 2015; 39: 97
[16] (赵军, 李冀蒙, 赵陆民, 尹硕, 陈久川, 文全兴. 稀有金属, 2015; 39: 97)
[17] Wang H Y, Lu W, Liu J H.Chin J High Pressure Phys, 2010; 24: 300
[17] (王海燕, 陆伟, 刘建华. 高压物理学报, 2010; 24: 300)
[18] Zhao S S, Peng Q P, Li H, Liu B Z.J Alloys Compd, 2014; 584: 56
[19] Jie J C, Zou C M, Wang H W, Li B, Wei Z J.J Alloys Compd, 2012; 510: 11
[20] Zhang G Z, Yu X F, Zhang Y J, Jia G L.J Mater Metall, 2006; 5(1): 61
[20] (张国志, 于溪凤, 张雅静, 贾光霖. 材料与冶金学报, 2006; 5(1): 61)
[21] Luo Z P, Zhang S Q, Tang Y L, Zhao D S.Scr Mater, 1993; 28: 1513
[22] Kim I J, Bae D H, Kim D H.Mater Sci Eng, 2003; A359: 313
[23] Zhang S J, Bian X F, Jing Y G, Li Z K, Wang C D.Spec Cast Nonferrous Alloys, 2007; 27: 698
[23] (张士佼, 边秀房, 景元高, 李贞宽, 王才东. 特种铸造及有色合金, 2007; 27: 698)
[24] Lin X P, Dong Y, Xu R, Sun G F, Jiao S H.Acta Metall Sin, 2011; 47: 1550
[24] (林小娉, 董允, 徐瑞, 孙桂芳, 焦世辉. 金属学报, 2011; 47: 1550)
[25] Lin X P, Dong Y, Xu R, Zheng R G, Jiao S H.Rare Met Mater Eng, 2013; 42: 2309
[25] (林小娉, 董允, 徐瑞, 郑润国, 焦世辉. 稀有金属材料与工程, 2013; 42: 2309 )
[26] Батншeв А И, translated by Zhang J S. Crystallization of Metal and Alloys Under Pressure. Harbin: Harbin University of Techonology Press, 1987: 23
[26] (Батншeв А И 著, 张锦升译. 金属和合金在压力下结晶. 哈尔滨: 哈尔滨工业大学出版社, 1987: 23)
[27] Jie J C, Zou C M, Wang H W, Wei Z J.Acta Metall Sin, 2014; 50: 971
[27] (接金川, 邹鹑鸣, 王宏伟, 魏尊杰. 金属学报, 2014; 50: 971)
[1] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[2] 杨光昱 孟宏帅 齐元昊 刘少军 介万奇. Al-6.3Zn-2.8Mg-1.8Cu铸造铝合金的组织和室温力学性能[J]. 金属学报, 2012, 48(2): 211-219.
[3] 蒋光锐; 刘源; 李言祥 . 铝合金熔体中氢溶解度的计算模型[J]. 金属学报, 2008, 44(2): 129-133 .
[4] 张华伟; 李言祥; 刘源 . 氢在Gasar工艺常用纯金属中的溶解度[J]. 金属学报, 2007, 43(2): 113-118 .
[5] 王学敏; 尚成嘉; 杨善武; 李闯; 贺信莱; 周桂峰 . 用蠕变法研究Cu-Nb钢中的时效行为[J]. 金属学报, 2005, 41(12): 1256-1260 .
[6] 王海川; 王世俊; 乐可襄; 董元篪; 李文超 . Fe-Cj(j=Ti,V,Cr,Mn)熔体的热力学性质规律[J]. 金属学报, 2001, 37(9): 952-956 .
[7] 崔金兰; 张懿 . Na2CrO4-NaHCO3-H2O体系的相平衡和溶液物化性质[J]. 金属学报, 1999, 35(10): 1062-1064 .
[8] 刘刚;陈瑞亮;李重河;陈念贻. 熔盐-液体金属相互溶解度的规律性[J]. 金属学报, 1997, 33(9): 939-942.
[9] 张茂勋;陈晓;钱匡武;里达雄;神尾彰彦. Al_2O_3-SiO_2系纤维增强ZL109合金复合材料的时效特性[J]. 金属学报, 1997, 33(8): 891-896.
[10] 田文怀;杨海春;根本■. TiAl金属间化合物中(Al,Ag)_3Ti,Ti_3AlC的析出形态[J]. 金属学报, 1997, 33(7): 677-682.
[11] 吴秋允;张静华;孙秀魁;胡壮麒. 氢在镍基单晶高温合金中的扩散和溶解[J]. 金属学报, 1996, 32(9): 938-942.
[12] 李来凤;邢中枢. Ce,Nd和Y在α-Fe中的溶解度[J]. 金属学报, 1993, 29(3): 40-45.
[13] 蒋晓军;邓文;桂全红;李依依;熊良铖;师昌绪. Zn对Al-Li-Cu-Mg-Zr合金时效过程的影响[J]. 金属学报, 1993, 29(12): 1-7.
[14] 林一坚;S.GIALANELLA;R.W.CAHN. 无序态(Co,Fe)_3V应变-时效硬化的微观机制[J]. 金属学报, 1992, 28(11): 40-46.
[15] 翟启杰;胡汉起. 氮在灰铸铁溶液中溶解度的热力学研究[J]. 金属学报, 1991, 27(4): 145-147.