Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1579-1585    DOI: 10.11900/0412.1961.2016.00091
  本期目录 | 过刊浏览 |
TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*
申造宇,何利民(),黄光宏,牟仁德,顾金旺,刘维众
中国航空发动机集团有限公司北京航空材料研究院航空材料先进腐蚀与防护航空科技重点实验室, 北京100095
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE
Zaoyu SHEN,Limin HE(),Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU
Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
Zaoyu SHEN, Limin HE, Guanghong HUANG, Rende MU, Jinwang GU, Weizhong LIU. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE[J]. Acta Metall Sin, 2016, 52(12): 1579-1585.

全文: PDF(6025 KB)   HTML
  
摘要: 

采用电子束物理气相沉积(EB-PVD)制备出大尺寸、超薄、化学成分均匀的TiAl/Ti3Al微叠层复合材料. 通过XRD和SEM对材料的相组成和微观结构进行了分析. 结果表明: TiAl/Ti3Al微叠层表面状态良好, 具有明显的层状结构, 相结构由α2-Ti3Al和γ-TiAl组成. 利用热等静压技术对微叠层进行了致密化处理, 经热等静压处理后的试样具有较高的拉伸强度, 并表现出较好的延伸率. 根据拉伸断口形貌及结构特征, 探讨了微叠层材料薄板的微观变形机制和断裂机理. TiAl/Ti3Al微叠层薄板经热等静压处理后, 材料断裂方式由沿晶脆性断裂转变为具有一定韧性的准解理断裂和沿晶脆性断裂的混合断裂方式.

关键词 电子束物理气相沉积,微叠层材料,微观结构,力学性能,断裂机理    
Abstract

In recent years, intermetallic compounds have received a lot of considerable attentions for high temperature applications in modern aircraft manufacturers, high temperature engine components, shape memory devices and power generation industry. Among these materials, Ti-Al intermetallic compounds are fascinating materials owing to their low density, high stiffness and good creep properties. However, the structure of the metallic bonding in these intermetallics is the important reason for their insufficient ductility at room temperature. In this work, large-sized TiAl/Ti3Al multi-layered composite thin sheet with uniform chemical composition was prepared by electron beam physical vapor deposition (EB-PVD) technology. The composite and microstructure of multi-layered composite were analyzed by XRD and SEM. The results indicated that the prepared material with visible lamellar structure was composed of α2-Ti3Al and γ-TiAl phases. The densification process of composite was carried out by hot isostatic pressing. The multi-layered material was evaluated with static tensile test before and after hot isostatic pressing. The multi-layered composite after hot isostatic pressing had a higher tensile strength and a good characteristic of tensile elongation. Based on the tensile fracture morphology, the microscopic deformation mechanisms and fracture mechanism were investigated. After hot isostatic pressing, the fracture mechanism transforms to a mixed mode which consists of intergranular fracture and cleavage fracture.

Key wordselectron beam physical vapor deposition (EB-PVD),    microlaminate,    microstructure,    mechanical property,    fracture mechanism
收稿日期: 2016-03-17     
图1  TiAl/Ti3Al微叠层复合材料的XRD谱
图2  TiAl/Ti3Al微叠层复合材料的表面和截面及热等静压处理后试样截面的SEM像
图3  TiAl/Ti3Al微叠层横截面形貌及其对应的 EDS
图4  TiAl/Ti3Al微叠层材料热等静压前后室温拉伸断口形貌
图5  TiAl/Ti3Al微叠层材料热等静压态825 ℃高温拉伸断口形貌
[1] Ward-Close C M, Froes F H.JOM, 1994; 46(1): 28
[2] Kim Y W.JOM, 1989; 41(7): 24
[3] Yue Y L, Wu H T, Wang Z J, Zhang L M.J Univ Jinan (Sci Tech), 2004; 18(2): 31
[3] (岳云龙, 吴海涛, 王志杰, 张联盟. 济南大学学报(自然科学版), 2004; 18(2): 31)
[4] Zhang J.J Aeron Mater, 2014; 34(4): 119(张继. 航空材料学报, 2014; 34(4): 119)
[5] Chen Y Y, Cui N, Kong F T.J Aeron Mater, 2014; 34(4): 112
[5] (陈玉勇, 崔宁, 孔凡涛. 航空材料学报, 2014; 34(4): 112)
[6] Shen Z Y, Huang G H, He L M, Mu R D, Gu J W, Zheng H.Rare Met Mater Eng, 2016; 45: 776
[6] (申造宇, 黄光宏, 何利民, 牟仁德, 顾金旺, 郑洪. 稀有金属材料与工程, 2016; 45: 776)
[7] Heathcote J, Odette G R, Lucas G E, Rowe R G, Skelly D W.Acta Mater, 1996; 44: 4289
[8] Ferrari B, Sanchez-Herencia A J, Moreno R.Mater Lett, 1998; 35: 370
[9] Was G S, Foecke T.Thin Solid Films, 1996; 286: 1
[10] Sun Y B, Ma F M, Xiao W L, Ma C L.J Aeron Mater, 2014; 34(4): 9
[10] (孙彦波, 马凤梅, 肖文龙, 马朝利. 航空材料学报, 2014; 34(4): 9)
[11] Ma L, He L J, Shao X Y, Wang G P, Zhang M X.J Mater Eng, 2016; 44(1): 89
[11] (马李, 何录菊, 邵先亦, 王古平, 张梦贤. 材料工程, 2016; 44(1): 89)
[12] Dorsey J, Poteet C, Chen R, Wurster K.40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2002: 0502
[13] Lapin J. Intermetallics, 2006; 14: 115
[14] Zhang D M, Chen G Q, Han J C, Yao Z Z.J Aeron Mater, 2006; 26(4): 35
[14] (章德铭, 陈贵清, 韩杰才, 姚振中. 航空材料学报, 2006; 26(4): 35)
[15] Cao H C, Lofvander J P A, Evans A G, Rowe R G, Skelly D W.Mater Sci Eng, 1994; A185: 87
[16] Liang X P, Liu Y, Li H Z, Gan Z Y, Liu B, He Y H.Mater Sci Eng, 2014; A619: 265
[17] Kulkarni K N, Sun Y, Sachdev A K, Lavernia E.Scr Mater, 2013; 68: 841
[18] Ma Z S, Zhou Y C, Long S G, Zhong X L, Lu C.Mech Mater, 2012; 54: 113
[19] Ma Z S, Long S G, Zhou Y C, Pan Y.Scr Mater, 2008; 59: 195
[20] Ma Z S, Zhou Y C, Long S G, Lu C.Int J Plasticity, 2012; 34: 1
[21] Li X H, Chen G Q, Han J C, Meng S H.Aerosp Mater Technol, 2005; 35(6): 13
[21] (李晓海, 陈贵清, 韩杰才, 孟松鹤. 宇航材料工艺, 2005; 35(6): 13)
[22] Ma L, Sun Y, He X D.Rare Met Mater Eng, 2008; 37: 325
[23] Movchan B A, Demchishin A V.Phys Met Metallogr-USSR, 1969; 28: 83
[24] Groves J F.PhD Dissertation, University of Virginia, 1998
[25] Jankowski A F.Nanostruct Mater, 1995; 6: 179
[26] Zhang D M, Chen G Q, Meng S H, Qu W, Han J C.Rare Met Mater Eng, 2007; 6: 973
[26] (章德铭, 陈贵清, 孟松鹤, 曲伟, 韩杰才. 稀有金属材料与工程, 2007; 6: 973)
[27] Zhang Y, Chu W Y, Wang Y B, Qiao L J, Xiao J M, Wang Z H, Bai C L.Acta Metall Sin, 1995; 31: 191
[27] (张跃, 褚武扬, 王燕斌, 乔利杰, 肖纪美, 王中怀, 白春礼. 金属学报, 1995; 31: 191)
[28] Shen Z Y, Huang G H, He L M, Mu R D, Chang Z D.Chin J Mater Res, 2014; 4: 314
[28] (申造宇, 黄光宏, 何利民, 牟仁德, 常振东.材料研究学报. 2014; 4: 314)
[1] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[14] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.