Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1579-1585    DOI: 10.11900/0412.1961.2016.00091
  本期目录 | 过刊浏览 |
TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*
申造宇,何利民(),黄光宏,牟仁德,顾金旺,刘维众
中国航空发动机集团有限公司北京航空材料研究院航空材料先进腐蚀与防护航空科技重点实验室, 北京100095
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE
Zaoyu SHEN,Limin HE(),Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU
Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(6025 KB)   HTML
  
摘要: 

采用电子束物理气相沉积(EB-PVD)制备出大尺寸、超薄、化学成分均匀的TiAl/Ti3Al微叠层复合材料. 通过XRD和SEM对材料的相组成和微观结构进行了分析. 结果表明: TiAl/Ti3Al微叠层表面状态良好, 具有明显的层状结构, 相结构由α2-Ti3Al和γ-TiAl组成. 利用热等静压技术对微叠层进行了致密化处理, 经热等静压处理后的试样具有较高的拉伸强度, 并表现出较好的延伸率. 根据拉伸断口形貌及结构特征, 探讨了微叠层材料薄板的微观变形机制和断裂机理. TiAl/Ti3Al微叠层薄板经热等静压处理后, 材料断裂方式由沿晶脆性断裂转变为具有一定韧性的准解理断裂和沿晶脆性断裂的混合断裂方式.

关键词 电子束物理气相沉积,微叠层材料,微观结构,力学性能,断裂机理    
Abstract

In recent years, intermetallic compounds have received a lot of considerable attentions for high temperature applications in modern aircraft manufacturers, high temperature engine components, shape memory devices and power generation industry. Among these materials, Ti-Al intermetallic compounds are fascinating materials owing to their low density, high stiffness and good creep properties. However, the structure of the metallic bonding in these intermetallics is the important reason for their insufficient ductility at room temperature. In this work, large-sized TiAl/Ti3Al multi-layered composite thin sheet with uniform chemical composition was prepared by electron beam physical vapor deposition (EB-PVD) technology. The composite and microstructure of multi-layered composite were analyzed by XRD and SEM. The results indicated that the prepared material with visible lamellar structure was composed of α2-Ti3Al and γ-TiAl phases. The densification process of composite was carried out by hot isostatic pressing. The multi-layered material was evaluated with static tensile test before and after hot isostatic pressing. The multi-layered composite after hot isostatic pressing had a higher tensile strength and a good characteristic of tensile elongation. Based on the tensile fracture morphology, the microscopic deformation mechanisms and fracture mechanism were investigated. After hot isostatic pressing, the fracture mechanism transforms to a mixed mode which consists of intergranular fracture and cleavage fracture.

Key wordselectron beam physical vapor deposition (EB-PVD),    microlaminate,    microstructure,    mechanical property,    fracture mechanism
收稿日期: 2016-03-17      出版日期: 2016-07-20

引用本文:

申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
Zaoyu SHEN,Limin HE,Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE. Acta Metall, 2016, 52(12): 1579-1585.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00091      或      http://www.ams.org.cn/CN/Y2016/V52/I12/1579

图1  TiAl/Ti3Al微叠层复合材料的XRD谱
图2  TiAl/Ti3Al微叠层复合材料的表面和截面及热等静压处理后试样截面的SEM像
图3  TiAl/Ti3Al微叠层横截面形貌及其对应的 EDS
图4  TiAl/Ti3Al微叠层材料热等静压前后室温拉伸断口形貌
图5  TiAl/Ti3Al微叠层材料热等静压态825 ℃高温拉伸断口形貌
[1] Ward-Close C M, Froes F H.JOM, 1994; 46(1): 28
[2] Kim Y W.JOM, 1989; 41(7): 24
[3] Yue Y L, Wu H T, Wang Z J, Zhang L M.J Univ Jinan (Sci Tech), 2004; 18(2): 31
[3] (岳云龙, 吴海涛, 王志杰, 张联盟. 济南大学学报(自然科学版), 2004; 18(2): 31)
[4] Zhang J.J Aeron Mater, 2014; 34(4): 119(张继. 航空材料学报, 2014; 34(4): 119)
[5] Chen Y Y, Cui N, Kong F T.J Aeron Mater, 2014; 34(4): 112
[5] (陈玉勇, 崔宁, 孔凡涛. 航空材料学报, 2014; 34(4): 112)
[6] Shen Z Y, Huang G H, He L M, Mu R D, Gu J W, Zheng H.Rare Met Mater Eng, 2016; 45: 776
[6] (申造宇, 黄光宏, 何利民, 牟仁德, 顾金旺, 郑洪. 稀有金属材料与工程, 2016; 45: 776)
[7] Heathcote J, Odette G R, Lucas G E, Rowe R G, Skelly D W.Acta Mater, 1996; 44: 4289
[8] Ferrari B, Sanchez-Herencia A J, Moreno R.Mater Lett, 1998; 35: 370
[9] Was G S, Foecke T.Thin Solid Films, 1996; 286: 1
[10] Sun Y B, Ma F M, Xiao W L, Ma C L.J Aeron Mater, 2014; 34(4): 9
[10] (孙彦波, 马凤梅, 肖文龙, 马朝利. 航空材料学报, 2014; 34(4): 9)
[11] Ma L, He L J, Shao X Y, Wang G P, Zhang M X.J Mater Eng, 2016; 44(1): 89
[11] (马李, 何录菊, 邵先亦, 王古平, 张梦贤. 材料工程, 2016; 44(1): 89)
[12] Dorsey J, Poteet C, Chen R, Wurster K.40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2002: 0502
[13] Lapin J. Intermetallics, 2006; 14: 115
[14] Zhang D M, Chen G Q, Han J C, Yao Z Z.J Aeron Mater, 2006; 26(4): 35
[14] (章德铭, 陈贵清, 韩杰才, 姚振中. 航空材料学报, 2006; 26(4): 35)
[15] Cao H C, Lofvander J P A, Evans A G, Rowe R G, Skelly D W.Mater Sci Eng, 1994; A185: 87
[16] Liang X P, Liu Y, Li H Z, Gan Z Y, Liu B, He Y H.Mater Sci Eng, 2014; A619: 265
[17] Kulkarni K N, Sun Y, Sachdev A K, Lavernia E.Scr Mater, 2013; 68: 841
[18] Ma Z S, Zhou Y C, Long S G, Zhong X L, Lu C.Mech Mater, 2012; 54: 113
[19] Ma Z S, Long S G, Zhou Y C, Pan Y.Scr Mater, 2008; 59: 195
[20] Ma Z S, Zhou Y C, Long S G, Lu C.Int J Plasticity, 2012; 34: 1
[21] Li X H, Chen G Q, Han J C, Meng S H.Aerosp Mater Technol, 2005; 35(6): 13
[21] (李晓海, 陈贵清, 韩杰才, 孟松鹤. 宇航材料工艺, 2005; 35(6): 13)
[22] Ma L, Sun Y, He X D.Rare Met Mater Eng, 2008; 37: 325
[23] Movchan B A, Demchishin A V.Phys Met Metallogr-USSR, 1969; 28: 83
[24] Groves J F.PhD Dissertation, University of Virginia, 1998
[25] Jankowski A F.Nanostruct Mater, 1995; 6: 179
[26] Zhang D M, Chen G Q, Meng S H, Qu W, Han J C.Rare Met Mater Eng, 2007; 6: 973
[26] (章德铭, 陈贵清, 孟松鹤, 曲伟, 韩杰才. 稀有金属材料与工程, 2007; 6: 973)
[27] Zhang Y, Chu W Y, Wang Y B, Qiao L J, Xiao J M, Wang Z H, Bai C L.Acta Metall Sin, 1995; 31: 191
[27] (张跃, 褚武扬, 王燕斌, 乔利杰, 肖纪美, 王中怀, 白春礼. 金属学报, 1995; 31: 191)
[28] Shen Z Y, Huang G H, He L M, Mu R D, Chang Z D.Chin J Mater Res, 2014; 4: 314
[28] (申造宇, 黄光宏, 何利民, 牟仁德, 常振东.材料研究学报. 2014; 4: 314)
[1] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[2] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
[3] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[4] 张涛, 严玮, 谢卓明, 苗澍, 杨俊峰, 王先平, 方前锋, 刘长松. 碳化物/氧化物弥散强化钨基材料研究进展[J]. 金属学报, 2018, 54(6): 831-843.
[5] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[6] 刘林, 孙德建, 黄太文, 张琰斌, 李亚峰, 张军, 傅恒志. 高梯度定向凝固技术及其在高温合金制备中的应用[J]. 金属学报, 2018, 54(5): 615-626.
[7] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
[8] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[9] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[10] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.
[11] 王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固态触变压缩变形行为及组织演变[J]. 金属学报, 2018, 54(1): 39-46.
[12] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[13] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[14] 刘国怀, 李天瑞, 徐莽, 付天亮, 李勇, 王昭东, 王国栋. 累积叠轧TC4钛合金的组织演化与力学性能[J]. 金属学报, 2017, 53(9): 1038-1046.
[15] 张文奇, 朱海红, 胡志恒, 曾晓雁. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918-926.