Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1579-1585    DOI: 10.11900/0412.1961.2016.00091
  本期目录 | 过刊浏览 |
TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*
申造宇,何利民(),黄光宏,牟仁德,顾金旺,刘维众
中国航空发动机集团有限公司北京航空材料研究院航空材料先进腐蚀与防护航空科技重点实验室, 北京100095
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE
Zaoyu SHEN,Limin HE(),Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU
Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(6025 KB)   HTML  
  
摘要: 

采用电子束物理气相沉积(EB-PVD)制备出大尺寸、超薄、化学成分均匀的TiAl/Ti3Al微叠层复合材料. 通过XRD和SEM对材料的相组成和微观结构进行了分析. 结果表明: TiAl/Ti3Al微叠层表面状态良好, 具有明显的层状结构, 相结构由α2-Ti3Al和γ-TiAl组成. 利用热等静压技术对微叠层进行了致密化处理, 经热等静压处理后的试样具有较高的拉伸强度, 并表现出较好的延伸率. 根据拉伸断口形貌及结构特征, 探讨了微叠层材料薄板的微观变形机制和断裂机理. TiAl/Ti3Al微叠层薄板经热等静压处理后, 材料断裂方式由沿晶脆性断裂转变为具有一定韧性的准解理断裂和沿晶脆性断裂的混合断裂方式.

关键词 电子束物理气相沉积,微叠层材料,微观结构,力学性能,断裂机理    
Abstract

In recent years, intermetallic compounds have received a lot of considerable attentions for high temperature applications in modern aircraft manufacturers, high temperature engine components, shape memory devices and power generation industry. Among these materials, Ti-Al intermetallic compounds are fascinating materials owing to their low density, high stiffness and good creep properties. However, the structure of the metallic bonding in these intermetallics is the important reason for their insufficient ductility at room temperature. In this work, large-sized TiAl/Ti3Al multi-layered composite thin sheet with uniform chemical composition was prepared by electron beam physical vapor deposition (EB-PVD) technology. The composite and microstructure of multi-layered composite were analyzed by XRD and SEM. The results indicated that the prepared material with visible lamellar structure was composed of α2-Ti3Al and γ-TiAl phases. The densification process of composite was carried out by hot isostatic pressing. The multi-layered material was evaluated with static tensile test before and after hot isostatic pressing. The multi-layered composite after hot isostatic pressing had a higher tensile strength and a good characteristic of tensile elongation. Based on the tensile fracture morphology, the microscopic deformation mechanisms and fracture mechanism were investigated. After hot isostatic pressing, the fracture mechanism transforms to a mixed mode which consists of intergranular fracture and cleavage fracture.

Key wordselectron beam physical vapor deposition (EB-PVD),    microlaminate,    microstructure,    mechanical property,    fracture mechanism
收稿日期: 2016-03-17      出版日期: 2016-07-20

引用本文:

申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
Zaoyu SHEN,Limin HE,Guanghong HUANG,Rende MU,Jinwang GU,Weizhong LIU. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF TiAl/Ti3Al MULTI-LAYERED COMPOSITE. Acta Metall, 2016, 52(12): 1579-1585.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00091      或      http://www.ams.org.cn/CN/Y2016/V52/I12/1579

图1  TiAl/Ti3Al微叠层复合材料的XRD谱
图2  TiAl/Ti3Al微叠层复合材料的表面和截面及热等静压处理后试样截面的SEM像
图3  TiAl/Ti3Al微叠层横截面形貌及其对应的 EDS
图4  TiAl/Ti3Al微叠层材料热等静压前后室温拉伸断口形貌
图5  TiAl/Ti3Al微叠层材料热等静压态825 ℃高温拉伸断口形貌
[1] Ward-Close C M, Froes F H.JOM, 1994; 46(1): 28
[2] Kim Y W.JOM, 1989; 41(7): 24
[3] Yue Y L, Wu H T, Wang Z J, Zhang L M.J Univ Jinan (Sci Tech), 2004; 18(2): 31
[3] (岳云龙, 吴海涛, 王志杰, 张联盟. 济南大学学报(自然科学版), 2004; 18(2): 31)
[4] Zhang J.J Aeron Mater, 2014; 34(4): 119(张继. 航空材料学报, 2014; 34(4): 119)
[5] Chen Y Y, Cui N, Kong F T.J Aeron Mater, 2014; 34(4): 112
[5] (陈玉勇, 崔宁, 孔凡涛. 航空材料学报, 2014; 34(4): 112)
[6] Shen Z Y, Huang G H, He L M, Mu R D, Gu J W, Zheng H.Rare Met Mater Eng, 2016; 45: 776
[6] (申造宇, 黄光宏, 何利民, 牟仁德, 顾金旺, 郑洪. 稀有金属材料与工程, 2016; 45: 776)
[7] Heathcote J, Odette G R, Lucas G E, Rowe R G, Skelly D W.Acta Mater, 1996; 44: 4289
[8] Ferrari B, Sanchez-Herencia A J, Moreno R.Mater Lett, 1998; 35: 370
[9] Was G S, Foecke T.Thin Solid Films, 1996; 286: 1
[10] Sun Y B, Ma F M, Xiao W L, Ma C L.J Aeron Mater, 2014; 34(4): 9
[10] (孙彦波, 马凤梅, 肖文龙, 马朝利. 航空材料学报, 2014; 34(4): 9)
[11] Ma L, He L J, Shao X Y, Wang G P, Zhang M X.J Mater Eng, 2016; 44(1): 89
[11] (马李, 何录菊, 邵先亦, 王古平, 张梦贤. 材料工程, 2016; 44(1): 89)
[12] Dorsey J, Poteet C, Chen R, Wurster K.40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2002: 0502
[13] Lapin J. Intermetallics, 2006; 14: 115
[14] Zhang D M, Chen G Q, Han J C, Yao Z Z.J Aeron Mater, 2006; 26(4): 35
[14] (章德铭, 陈贵清, 韩杰才, 姚振中. 航空材料学报, 2006; 26(4): 35)
[15] Cao H C, Lofvander J P A, Evans A G, Rowe R G, Skelly D W.Mater Sci Eng, 1994; A185: 87
[16] Liang X P, Liu Y, Li H Z, Gan Z Y, Liu B, He Y H.Mater Sci Eng, 2014; A619: 265
[17] Kulkarni K N, Sun Y, Sachdev A K, Lavernia E.Scr Mater, 2013; 68: 841
[18] Ma Z S, Zhou Y C, Long S G, Zhong X L, Lu C.Mech Mater, 2012; 54: 113
[19] Ma Z S, Long S G, Zhou Y C, Pan Y.Scr Mater, 2008; 59: 195
[20] Ma Z S, Zhou Y C, Long S G, Lu C.Int J Plasticity, 2012; 34: 1
[21] Li X H, Chen G Q, Han J C, Meng S H.Aerosp Mater Technol, 2005; 35(6): 13
[21] (李晓海, 陈贵清, 韩杰才, 孟松鹤. 宇航材料工艺, 2005; 35(6): 13)
[22] Ma L, Sun Y, He X D.Rare Met Mater Eng, 2008; 37: 325
[23] Movchan B A, Demchishin A V.Phys Met Metallogr-USSR, 1969; 28: 83
[24] Groves J F.PhD Dissertation, University of Virginia, 1998
[25] Jankowski A F.Nanostruct Mater, 1995; 6: 179
[26] Zhang D M, Chen G Q, Meng S H, Qu W, Han J C.Rare Met Mater Eng, 2007; 6: 973
[26] (章德铭, 陈贵清, 孟松鹤, 曲伟, 韩杰才. 稀有金属材料与工程, 2007; 6: 973)
[27] Zhang Y, Chu W Y, Wang Y B, Qiao L J, Xiao J M, Wang Z H, Bai C L.Acta Metall Sin, 1995; 31: 191
[27] (张跃, 褚武扬, 王燕斌, 乔利杰, 肖纪美, 王中怀, 白春礼. 金属学报, 1995; 31: 191)
[28] Shen Z Y, Huang G H, He L M, Mu R D, Chang Z D.Chin J Mater Res, 2014; 4: 314
[28] (申造宇, 黄光宏, 何利民, 牟仁德, 常振东.材料研究学报. 2014; 4: 314)
[1] 刘晓云,王文广,王东,肖伯律,倪丁瑞,陈礼清,马宗义. 片层石墨尺寸对片层石墨/Al复合材料的强度和热导率的影响[J]. 金属学报, 2017, 53(7): 869-878.
[2] 董丹,蒋百灵,郭萌,杨超. 碳基非晶镀层的纳米晶诱发机理及其摩擦学性能研究[J]. 金属学报, 2017, 53(7): 879-887.
[3] 杨建海,张玉祥,葛利玲,程晓,陈家照,高杨. 焊前混合表面纳米化对2A14铝合金搅拌摩擦焊接头微观组织和力学性能的影响[J]. 金属学报, 2017, 53(7): 842-850.
[4] 张洪伟,秦学智,李小武,周兰章. 一种高硼定向凝固合金的初熔行为及其对力学性能的影响[J]. 金属学报, 2017, 53(6): 684-694.
[5] 巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
[6] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2017, 53(5): 615-621.
[7] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[8] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[9] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[10] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[11] 黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.
[12] 王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.
[13] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[14] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.
[15] 孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*[J]. 金属学报, 2016, 52(7): 875-882.