Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1388-1394    DOI: 10.11900/0412.1961.2016.00077
  本期目录 | 过刊浏览 |
铝合金/不锈钢双光束激光深熔焊接接头组织及力学性能*
潘峰,崔丽(),钱伟,贺定勇,魏世忠
北京工业大学材料科学与工程学院, 北京 100124
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL-BEAM LASER KEYHOLE WELDED JOINTS OF ALUMINUM ALLOYS TO STAINLESS STEELS
Feng PAN,Li CUI(),Wei QIAN,Dingyong HE,Shizhong WEI
School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
引用本文:

潘峰,崔丽,钱伟,贺定勇,魏世忠. 铝合金/不锈钢双光束激光深熔焊接接头组织及力学性能*[J]. 金属学报, 2016, 52(11): 1388-1394.
Feng PAN, Li CUI, Wei QIAN, Dingyong HE, Shizhong WEI. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL-BEAM LASER KEYHOLE WELDED JOINTS OF ALUMINUM ALLOYS TO STAINLESS STEELS[J]. Acta Metall Sin, 2016, 52(11): 1388-1394.

全文: PDF(1098 KB)   HTML
摘要: 

采用双光束光纤激光热源对1.5 mm厚5083铝合金和1.8 mm厚304不锈钢异种合金搭接接头进行了激光深熔焊接工艺实验, 研究了光束相对位置对接头焊缝成形、界面组织及接头力学性能的影响. 结果表明, 在无任何填充材料条件下, 采用双光束激光进行铝合金/不锈钢异种合金激光深熔焊接能够获得良好的焊缝表面成形, 小能量分光束在前的接头界面金属间化合物(IMC)厚度相对较薄. 接头界面纳米硬度测试结果表明, IMC层平均硬度为9.61 GPa, 且明显高于不锈钢母材(4.12 GPa)和铝合金母材(1.09 GPa). 接头拉伸断裂于铝合金/不锈钢IMC界面层. 小能量分光束在前的接头获得机械抗力大于分光束在后的接头.

关键词 铝合金/不锈钢异种合金,双光束,激光深熔焊,金属间化合物(IMC)    
Abstract

Aluminum alloy and steel thin sheets have been mostly used in the automotive industry to get a lightweight car body. Nowadays several studies are focused on the joining of aluminum alloy to steel by new welding methods especially by laser welding. In this work dual-beam fiber laser keyhole welding was introduced to joining of 1.5 mm-thick aluminum alloys to 1.8 mm-thick 304 stainless steels in an overlap joint configure. The influences of different laser focusing positions on the weld appearance, interface microstructures and tensile mechanical resistance of the welded joints were studied. As a result, the good weld appearance of the aluminum alloy to stainless steel joints were obtained by dual-beam fiber laser keyhole welding process without any filler materials. The thickness of the intermetallic compound layer of the joint interface is comparatively thin when the laser beam with low energy is focusing on the front. The nano-hardness testing results show that the average hardness of intermetallic compound layer is 9.61 GPa, which is significantly higher than that of the parent stainless steel of 4.12 GPa and aluminum alloy of 1.09 GPa. The fracture of the welded joints occurs on the aluminum alloy/stainless steel interface layer. The highest mechanical resistance of 131 N/mm can be obtained by the low energy laser beam focused on the front.

Key wordsaluminum    alloy/stainless    steel    dissimilar    alloy,    dual-laser    beam,    laser    deep    penetration    welding,    intermetallic    compound    (IMC)
收稿日期: 2016-03-09     
基金资助:* 国家自然科学基金项目51475006和北京市教育委员会科技计划重点项目暨北京市自然科学基金B类项目KZ201610005004资助
图1  双光束激光深熔焊接铝合金/不锈钢示意图
图2  双光束激光焊接焊缝表面形貌
图3  不同光束条件下铝合金/不锈钢双光束激光焊接接头OM像
图4  铝合金/不锈钢接头界面区SEM像
图5  铝合金/不锈钢界面处金属间化合物(IMC)的SEM像及EDS元素线扫描分析
图6  纳米压痕载荷-位移曲线
图 7  接头断口横截面OM像
图8  接头断口SEM像
图9  接头断口XRD谱
[1] Liu B, Peng C Q, Wang R C, Wang X F, Li T T.Chin J Nonferrous Met, 2010; 20: 1705
[1] (刘兵, 彭超群, 王日初, 王小锋, 李婷婷. 中国有色金属学报, 2010; 20: 1705)
[2] Wang Z T, Zhang X H.Light Alloy Fabrication Technol, 2011; 39(2): 1
[2] (王祝堂, 张新华. 轻合金加工技术, 2011; 39(2): 1)
[3] Zhang W Z.Master Thesis, Dalian University of Technology, 2009
[3] (张维哲. 大连理工大学硕士学位论文, 2009)
[4] Ma K, Chen S H, Huang J H, Xia J, Zhang H, Zhao X K.Appl Laser, 2010; 30: 493
[4] (马柯, 陈树海, 黄继华, 夏军, 张华, 赵兴科. 应用激光, 2010; 30: 493)
[5] Lu J X, Yang W X, Wu S K, Zhao X D, Xiao R S.Acta Metall Sin (Engl Lett), 2014; 27: 670
[6] Zhou D W, Peng Y, Xu S H, Liu J S.Acta Metall Sin, 2013; 49: 959
[6] (周惦武, 彭艳, 徐少华, 刘金水. 金属学报, 2013; 49: 959)
[7] Zhou D W, Wu P, Peng L, Zhang Y, Chen G Y.Chin J Nonferrous Met, 2012; 22: 1738
[7] (周惦武, 吴平, 彭利, 张屹, 陈根余. 中国有色金属学报, 2012; 22: 1738)
[8] Ma J J, Masoud H, Carlson B, Kovacevic R.Mater Des, 2014; 58: 390
[9] Chen S H, Huang J H, Yang D D, Ma K, Zhang H.Trans China Weld, 2012; 33(8): 9
[9] (陈树海, 黄继华, 杨冬冬, 马柯, 张华. 焊接学报, 2012; 33(8): 9)
[10] Zhang S Z.Master Thesis, Lanzhou University of Technology, 2012
[10] (张诗正. 兰州理工大学硕士学位论文, 2012)
[11] Zhang D W.Master Thesis, Harbin Institute of Technology, 2010
[11] (张东卫. 哈尔滨工业大学硕士学位论文, 2010)
[12] Xiao R S, Dong P, Zhao X D.Chin J Lasers, 2011; 38(6): 28
[12] (肖荣诗, 董鹏, 赵旭东. 中国激光, 2011; 38(6): 28)
[13] Torkamany M J, Tahamtan S, Sabbaghzadeh J.Mater Des, 2010; 31: 458
[14] David A K, Team P.Mater Des, 2014; 54: 184
[15] Sierra G, Peyre P, Deschaux-Beaume F, Stuart D, Fras D.Mater Sci Eng, 2007; 447: 197
[16] Li L Q, Chen Y B, Tao W.Chin J Lasers, 2008; 35: 1783
[16] (李俐群, 陈彦宾, 陶汪. 中国激光, 2008; 35: 1783)
[17] Huang Y, Wang C M, Duan Z C, Hu L J, Hu X Y.Machinery, 2006; 44(5): 19
[17] (黄禹, 王春明, 段正澄, 胡伦骥, 胡席远. 机械制造, 2006; 44(5): 19)
[18] Yang J, Li X Y, Chen L, Gong S L, Li Q Y.Rare Met Mater Eng, 2011; 40: 871
[18] (杨璟, 李晓延, 陈俐, 巩水利, 李巧艳. 稀有金属材料与工程, 2011; 40: 871)
[19] Harooni M, Carlson B, Kovacevic R.Opt Laser Technol, 2014; 56: 247
[20] Harooni M, Ma J J, Carlson B, Kovacevic R.J Mater Process Technol, 2015; 216: 114
[21] Laukant H, Wallmann C, Korte M, Glatzel U. Adv Mater Res#/magtechI #, 2005; 6-8: 163
[22] Li L Q, Tan C W, Chen Y B, Guo W, Mei C X.J Mater Process Technol, 2013; 213: 361
[23] Tan C W, Mei C X, Li L Q, Dai J M, Guo W.Chin J Nonferrous Met, 2012; 22: 1577
[23] (檀财旺, 梅长兴, 李俐群, 戴景民, 郭伟. 中国有色金属学报, 2012; 22: 1577)
[24] Shi Y, Zhang H, Watanabe T, Tang J G.Opt Lasers Eng, 2010; 48: 732
[25] Qin G L, Lin S Y.Trans China Weld, 2006; 27(1): 81(秦国梁, 林尚扬. 焊接学报, 2006; 27(1): 81)
[1] 裴莹蕾,吴爱萍,单际国,任家烈. 基于熔池流动分析的高速激光焊驼峰焊道形成过程研究[J]. 金属学报, 2013, 49(6): 725-730.
[2] 陈高,高子英. 焊接工艺参数对低碳钢CO2激光深熔焊接气孔形成的影响[J]. 金属学报, 2013, 49(2): 181-186.
[3] 封小松; 陈彦宾; 李俐群 . 镀锌板激光钎焊温度场的数值模拟[J]. 金属学报, 2006, 42(8): 882-886 .