Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1477-1483    DOI: 10.11900/0412.1961.2016.00073
  本期目录 | 过刊浏览 |
超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制*
王庆娟(),周晓,梁博,周滢
西安建筑科技大学冶金工程学院, 西安 710055
HIGH TEMPERATURE TENSILE PROPERTIES AND FRACTURE MECHANISM OF ULTRA-FINE GRAIN Cu-Cr-Zr ALLOY
Qingjuan WANG(),Xiao ZHOU,Bo LIANG,Ying ZHOU
School of Metallurgical and Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
全文: PDF(1331 KB)   HTML  
摘要: 

研究了2种变形处理方式下的超细晶Cu-Cr-Zr合金从室温到600 ℃的拉伸性能、断口微观组织特征及其断裂机制. 结果表明: 经4道次等径弯曲通道挤压(ECAP)+时效+4道次ECAP变形处理的合金(No.1试样)的抗拉强度随拉伸温度的升高而降低, 室温时, 合金抗拉强度为577.17 MPa, 延伸率为14.6%; 在300 ℃开始发生动态再结晶软化, 抗拉强度迅速减小, 到600 ℃时抗拉强度仅为59.12 MPa. 经过8道次ECAP+时效变形处理的合金(No.2试样), 室温抗拉强度为636.71 MPa, 延伸率为12.1%; 从400 ℃开始析出相对晶界的钉扎作用开始逐渐减弱, 抗拉强度大幅降低, 600 ℃时的抗拉强度为65.20 MPa. No.2试样比No.1试样具有更好的室温性能和热稳定性. 2种方式处理下合金延伸率随拉伸温度的升高而升高, 在高温下都表现出超塑性. 高温拉伸断口微观形貌为大量密集、深入的韧窝, 其高温断裂机制为微孔聚集的韧性断裂.

关键词 Cu-Cr-Zr合金,超细晶,高温拉伸,断裂机制    
Abstract

Cu-Cr-Zr alloy usually applys to the complex environment at high temperature. The mechanical behaviors of alloy are different from the condition of normal temperature. At high temperature, grains and precipitates of ultra-fine grain Cu-Cr-Zr alloy become coarse and it would affect the hot deformation behavior of alloy. To solve the thermal stability of the ultra-fine grain materials, the grain growth mechanism and the driving force of ultra-fine grain materials must be studied, as well as trace elements on the thermal stability mechanism. Tensile properties, microstructure of fracture and fracture mechanism of ultra-fine grain (UFG) Cu-Cr-Zr alloy made by two different treatment methods were studied at the temperature range of room temperature to 600 ℃. The results show that the ultimate tensile strength (UTS) of alloys decreases with increasing temperature. The UTS and elongation of No.1 alloys are about 577.17 MPa and 14.6% at room temperature, respectively. And No.1 alloy start to occur dynamic recrystallization and UTS decreases fast at 300 ℃. The UTS of No.1 alloy are only 59.12 MPa at 600 ℃. The UTS and elongation of No.2 alloy are about 636.71 MPa and 12.1% at room temperature, respectively. The pinning effect by precipitation on grain boundary in the No.2 alloy begins to weaken at 400 ℃. The UTS of No.2 alloy decreases fast and are only 65.20 MPa at 600 ℃. Compared to No.1 alloy, No.2 alloy have better room temperature property and thermal stability. The elongation of all alloys increases with increasing temperature and show superplasticity on elevated temperature. The high temperature tensile fracture morphologies are an intense and deep dimple pattern. The high temperature fracture mechanism is ductile fracture by gathered microporous.

Key wordsCu-Cr-Zr    alloy,    ultra-fine    grain,    high    temperature    tension,    fracture    mechanism
收稿日期: 2016-03-04      出版日期: 2016-07-06
基金资助:* 国家自然科学基金资助项目51104113

引用本文:

王庆娟,周晓,梁博,周滢. 超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制*[J]. 金属学报, 2016, 52(11): 1477-1483.
Qingjuan WANG,Xiao ZHOU,Bo LIANG,Ying ZHOU. HIGH TEMPERATURE TENSILE PROPERTIES AND FRACTURE MECHANISM OF ULTRA-FINE GRAIN Cu-Cr-Zr ALLOY. Acta Metall, 2016, 52(11): 1477-1483.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00073      或      http://www.ams.org.cn/CN/Y2016/V52/I11/1477

图1  2种等径弯曲通道挤压(ECAP)变形与时效工艺下Cu-Cr-Zr合金的微观组织
图2  2种ECAP变形与时效工艺下Cu-Cr-Zr合金400 ℃拉伸变形后的微观组织
图3  2种ECAP变形与时效工艺下Cu-Cr-Zr合金的拉伸应力-应变曲线

(a) specimen No.1 (b) specimen No.2

图4  2种ECAP变形与时效工艺下Cu-Cr-Zr合金的抗拉强度和延伸率随温度的变化
图5  No.1试样在不同温度下的拉伸断口形貌
图6  No.2试样在不同温度下的拉伸断口形貌
[1] Zhang Y, Li R Q, Xu Q Q, Tian B H, Liu Y, Liu P, Chen X H.Chin J Nonferrous Met, 2014; 24: 745
[1] (张毅, 李瑞卿, 许倩倩, 田保红, 刘勇, 刘平, 陈小红. 中国有色金属学报, 2014; 24: 745 )
[2] Pan Z Y, Chen J B, Li J F.Trans Nonferrous Met Soc China, 2015; 25: 1206
[3] Purcek G, Yanar H, Demirtas M, Alemdag Y, Shangina D V, Dobatkin S V.Mater Sci Eng, 2016; A649: 114
[4] Huang F X, Ma J S, Geng Z T, Ning H L, Lingmu Y F, Guo S M, Yu X T, Wang T, Li H, Li X C.Rare Met Mater Eng, 2004; 33: 267
[4] (黄福祥, 马莒生, 耿志挺, 宁洪龙, 铃木洋夫, 郭淑梅, 余雪涛, 王涛, 李红, 李鑫成. 稀有金属材料与工程, 2004; 33: 267)
[5] Huang F X, Ma J S, Ning H L.Scr Mater, 2003; 48: 97
[6] Correia J B, Davies H A, Sellars C M.Acta Mater, 1997; 45: 177
[7] Hatakeyama M, Toyama T, Yang J. J Nucl Mater#/magtechI#, 2009; 386-388: 852
[8] Vinogradov A, Patlan V, Suzuki Y, Kitagawa K, Kopylov V I.Acta Mater, 2002; 50: 1639
[9] Segal V M, Reznikov V I, Drobyshevskiy A E.Russian Metall (Eng Trans), 1981; 1: 99
[10] Xie H F, Mi X J, Huang G J, Gao B D, Yin X Q, Li Y F.Rare Met Mater Eng, 2012; 41: 1549
[10] (解浩峰, 米绪军, 黄国杰, 高宝东, 尹向前, 李艳锋. 稀有金属材料与工程, 2012; 41: 1549)
[11] Song D, Ma A B, Jiang J H, Lin P H, Yang D H.Trans Nonferrous Met Soc China, 2009; 19: 1065
[12] Abib K, Balanos J A M, Alili B, Bradai D.Mater Charact, 2016; 112: 252
[13] Zha M, Li Y J, Mathiesen R, Bjorge R, Roven H V.Trans Nonferrous Met Soc China, 2014; 24: 2301
[14] Zhang Y, Volinsky A A, Tran T H, Chai Z, Liu P, Tian B H, Liu Y.Mater Sci Eng, 2016; A650: 248
[15] Purcek G, Yanar H, Demirtas M, Alemdag Y, Shangina D V, Dobatkin S V.Mater Sci Eng, 2016; A649: 114
[16] Saray O.Mater Sci Eng, 2016; A656: 120
[17] Leon K V, Munoz-Morris M A, Morris D G.Mater Sci Eng, 2012; A536: 181
[18] Valiev R Z, Krasilnikov N A, Tsenev N K.Mater Sci Eng, 1991; A137: 35
[19] Zhu Y T, Lowc T C.Mater Sci Eng, 2000; A291: 46
[20] Mishra R S, Valiev R Z, McFadden S X, Islamgaliev R K, Mukherjee A K.Scr Mater, 1999; 40: 1151
[21] Shen Y F, Guan R G, Zhao Z Y, Misra R D K.Acta Mater, 2015; 100: 247
[22] Cheng J Y, Shen B, Yu F X.Mater Charact, 2013; 81: 68
[23] Su J H, Dong Q M, Liu P, Li H J, Kang B X.Mater Sci Technol, 2003; 19: 529
[24] Wang Z C, Wang W L, Luo S, Zhu M Y.Chin J Nonferrous Met, 2014; 24: 115
[24] (王志成, 王卫领, 罗森, 朱苗勇. 中国有色金属学报, 2014; 24: 115)
[25] Zhang J S.High Temperature Deformation and Fracture of Materials. Beijing: Science Press, 2007: 28
[25] (张俊善. 材料的高温变形与断裂. 北京: 科学出版社, 2007: 28)
[1] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[2] 马江南,王瑞珍,杨才福,查小琴,张利娟. 中厚板表层超细晶对止裂性能的影响[J]. 金属学报, 2016, 53(5): 549-558.
[3] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[4] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[5] 张旭, 王玉敏, 杨青, 雷家峰, 杨锐. SiCf/TC17复合材料拉伸行为研究[J]. 金属学报, 2015, 51(9): 1025-1037.
[6] 谢君,于金江,孙晓峰,金涛,杨彦红. 温度对高W含量K416B镍基合金拉伸行为的影响*[J]. 金属学报, 2015, 51(8): 943-950.
[7] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
[8] 接金川, 邹鹑鸣, 王宏伟, 魏尊杰. Al-20Mg合金高压凝固力学性能研究*[J]. 金属学报, 2014, 50(8): 971-978.
[9] 韩啸,陈吉,孙成,武占文,吴新春,张星航. 块体超细晶304L不锈钢的腐蚀及钝化性能的研究[J]. 金属学报, 2013, 49(3): 265-270.
[10] 赵世贤 宋晓艳 刘雪梅 魏崇斌 王海滨 高杨. 超细晶硬质合金显微组织参数与力学性能定量关系的研究[J]. 金属学报, 2011, 47(9): 1188-1194.
[11] 杨续跃 张之岭 王军 秦佳 陈志永. 多向压缩变形及退火制备超细晶铜合金[J]. 金属学报, 2011, 47(12): 1561-1566.
[12] 姜庆伟 刘印 王尧 晁月盛 李小武. 超细晶铜在退火与高温变形条件下微观结构的不稳定性研究[J]. 金属学报, 2009, 45(7): 873-879.
[13] 董毅 许云波 吴迪. 变形温度对含Nb双相钢显微组织的影响[J]. 金属学报, 2009, 45(11): 1314-1319.
[14] 王庆娟; 徐长征; 郑茂盛; 朱杰武; M.Buksa; L.Kunz . 等径弯曲通道制备的超细晶铜的疲劳性能[J]. 金属学报, 2007, 43(5): 498-502 .
[15] 黄志伟; 袁福河; 王中光; 朱世杰; 王富岗 . M38镍基高温合金高温低周疲劳性能及断裂机制[J]. 金属学报, 2007, 43(10): 1025-1030 .