α PHASE IN Ti-6Al-4V ALLOY" /> 位错对Ti-6Al-4V合金<i>α</i>相形核及微织构形成的影响<sup>*</sup>
Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 905-915    DOI: 10.11900/0412.1961.2016.00053
  论文 本期目录 | 过刊浏览 |
位错对Ti-6Al-4V合金α相形核及微织构形成的影响*
张金虎1,徐东生1(),王云志2,杨锐1
1 中国科学院金属研究所, 沈阳 110016.
2 The Ohio State University, Columbus, OH 43210, USA
INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY
Jinhu ZHANG1,Dongsheng XU1(),Yunzhi WANG2,Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 The Ohio State University, Columbus, OH 43210, USA
引用本文:

张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
Jinhu ZHANG, Dongsheng XU, Yunzhi WANG, Rui YANG. INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY[J]. Acta Metall Sin, 2016, 52(8): 905-915.

全文: PDF(986 KB)   HTML
摘要: 

借助Willis-Steeds-Lothe方法计算了单根长直刃型与螺型位错应力场, 并采用相场动力学方法模拟了含位错Ti-6Al-4V合金中βα转变过程, 探索长直位错应力场下共格α相的形核及对微织构形成的影响. 研究表明, 刃型位错应力场与择优α变体间相互作用能中, 正应力分量S33起主要作用; 螺型位错时切应力分量S23作用最大. 刃型位错应力场对α变体选择的作用要强于螺型位错. 刃型位错下择优变体以V1与V7为主, 螺型位错时以变体V7, V10及V12为主, 且V1/V7, V1/V4/V6是刃型位错下主要出现的变体组合类型, 而螺型位错时则以V7/V10/V12组合为主. 含位错体系的微观组织由位错应力场与α变体之间相互作用能, 以及α变体之间弹性相互作用能共同决定. 位错周围的应力场可导致界面能较高的界面类型出现.

关键词 Ti-6Al-4V合金位错相场模拟变体选择微织构    
Abstract

Titanium alloys are widely applied in aerospace, chemical and other related industries. The α+β alloys may obtain various microstructures and mechanical properties simply by varying their thermomechanical processing. Ti-6Al-4V alloy is the most common α+β titanium alloy. Its strength, ductility, fracture toughness and fatigue properties depend strongly on the microstructure especially texture. The understanding of the formation mechanisms of α micro-texture during processing is necessary for the optimization of the mechanical properties. In this work, the nucleation of α precipitates and micro-texture formation process under the influence of dislocations during the βα transformation in Ti-6Al-4V alloy was simulated by phase field method. The stress field of an infinite straight dislocation was calculated by Willis-Steeds-Lothe method and used as input of the phase field model. It was shown that the normal stress component S33 plays a dominant role in α variants nucleation in the presence of edge dislocation, while the shear stress component S23 is the most important one for screw dislocation. The effect of edge dislocation on α variant selection is generally stronger than that of screw. V1 and V7 are the main variants selected by the edge dislocation while V7, V10 and V12 dominate around the screw dislocation, with V1/V7, V1/V4/V6 being the main variant cluster types around the edge dislocation, and V7/V10/V12 being the primary one for the screw dislocation. In a system with the presence of dislocations in the parent phase, the precipitate microstructure is determined by the combined effect of elastic interactions between the dislocation and different variants of a low symmetry precipitate phase, and elastic interactions among different variants. Variants with interfaces of relatively high energy may appear because of variants selection by dislocations.

Key wordsTi-6Al-4V alloy    dislocation    phase field simulation    variant selection    micro-texture
收稿日期: 2016-02-02     
基金资助:* 国家重点基础研究发展计划项目2006CB605104和2011CB606404, 以及国家自然科学基金项目51101158与51171195资助
图1  含单根无限长刃型与螺型位错的相场模拟初始构型示意图
图2  单根无限长刃型位错应力场分布
图3  τ=104时沿刃型位错线生长的α变体形貌及对应α相微织构的{0001}与{1120}极图
图4  单根无限长螺型位错应力场分布
图5  τ=104时沿螺型位错线析出的α变体形貌以及对应α相微织构的{0001}和{1120}极图
图6  不同α变体与单根无限长刃型及螺型位错间相互作用能的极小值
图7  变体V1和V7同其它变体间弹性相互作用能的平均值Bˉ7,12和Bˉ1p( p=1, Bˉ7p, 12)
图8  刃位错和螺位错与变体的相互作用能极小值中各应力分量的贡献
[1] Furuhara T, Maki T.Mater Sci Eng, 2001; A312: 145
[2] Gey N, Humbert M, Philippe M J, Combres Y.Mater Sci Eng, 1997; A230: 68
[3] Feng Z Q, Yang Y Q, Huang B, Luo X, Li M H, Han M, Fu M S.Acta Mater, 2011; 59: 2412
[4] van Bohemen S M C, Kamp A, Petrov R H, Kestens L A I, Sietsma J.Acta Mater, 2008; 56: 5907
[5] Bhattacharyya D, Viswanathan G B, Denkenberger R, Furrer D, Fraser H L.Acta Mater, 2003; 51: 4679
[6] Bhattacharyya D, Viswanathan G B, Fraser H L.Acta Mater, 2007; 55: 6765
[7] Shi R, Wang Y.Acta Mater, 2013; 61: 6006
[8] Glavicic M, Goetz R, Barker D, Shen G, Furrer D, Woodfield A, Semiatin S.Metall Mater Trans, 2008; 39A: 887
[9] Bate P, Hutchinson B.Acta Mater, 2000; 48: 3183
[10] Germain L, Gey N, Humbert M, Vo P, Jahazi M, Bocher P.Acta Mater, 2008; 56: 4298
[11] Banerjee D, Williams J C.Acta Mater, 2013; 61: 844
[12] Germain L, Gey N, Humbert M, Bocher P, Jahazi M.Acta Mater, 2005; 53: 3535
[13] Humbert M, Germain L, Gey N, Bocher P, Jahazi M.Mater Sci Eng, 2006; A430: 157
[14] Thomas G, Nutting J.The Mechanism of Phase Transformations in Metals .London: Institute of Metals, 1956: 57
[15] Xu D S, Wang H, Teng C Y, Zhang J H, Wu H N, Bai C G, Yang R.e-Sci Technol Appl, 2015; 6(3): 14
[15] (徐东生, 王皞, 滕春禹, 张金虎, 武鹤楠, 柏春光, 杨锐. 科研信息化技术与应用, 2015; 6(3): 14)
[16] Teng C Y, Zhou N, Wang Y, Xu D S, Du A, Wen Y H, Yang R.Acta Mater, 2012; 60: 6372
[17] Teng C Y, Du A, Xu D S, Wang Y, Yang R.Intermetallics, 2015; 65: 1
[18] Yin J, Barnett D M, Cai W.Model Simul Mater Sci Eng, 2010; 18: 045013
[19] Ledbetter H, Ogi H, Kai S, Kim S, Hirao M.J Appl Phys, 2004; 95: 4642
[20] Burgers W G.Physica, 1934; 1: 561
[21] Geng F, Niinomi M, Nakai M.Mater Sci Eng, 2011; A528: 5435
[22] Savage M, Tatalovich J, Mills M.Philos Mag, 2004; 84: 1127
[23] Khachaturyan A G.Theory of Structural Transformations in Solids. New York: John Wiley & Sons, Inc, 1983: 198
[24] Wang Y U, Jin Y M, Cuiti?o A M, Khachaturyan A G.Acta Mater, 2001; 49: 1847
[25] Qiu D, Shi R, Zhang D, Lu W, Wang Y.Acta Mater, 2015; 88: 218
[26] Zhou N, Lv D C, Zhang H L, McAllister D, Zhang F, Mills M J, Wang Y,Acta Mater, 2014; 65: 270
[27] Shi R, Ma N, Wang Y.Acta Mater, 2012; 60: 4172
[28] Yang M, Wang G, Teng C Y, Xu D S, Zhang J, Yang R, Wang Y.Acta Metall Sin, 2012; 48: 148
[28] (杨梅, 王刚, 滕春禹, 徐东生, 张鉴, 杨锐, 王云志. 金属学报, 2012; 48: 148)
[29] Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y.Acta Mater, 2009; 57: 316
[30] Wang Y, Chen L Q. Simulation of Microstructural Evolution Using the Field Method. New York: John Wiley & Sons, Inc, 2000: 2a3.1
[31] Zhang J H, Teng C Y, Yang M, Xu D S, Wang Y, Yang R.Chin Nonferrous Met, 2013; 23(suppl): s296
[31] (张金虎, 滕春禹, 杨梅, 徐东生, 王云志, 杨锐. 中国有色金属学报, 2013; 23(特刊): s296)
[32] Hull D, Bacon D J.Introduction to Dislocations. 5th Ed., Oxford: Elsevier Ltd, 2011: 63
[33] Furuhara T, Nakamori H, Maki T.Mater Trans, 1992; 33: 585
[34] Ba?tecká J.Czech J Phys, 1965; 15B: 595
[35] Wang S C, Aindow M, Starink M J.Acta Mater, 2003; 51: 2485
[36] Heo T W, Bhattacharyya S, Chen L Q.Philos Mag, 2013; 93: 1468
[37] Wang S, Starink M, Ubhi H, Li W.Rev Adv Mater Sci, 2012; 32: 47
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[3] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[4] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[5] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[7] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[8] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[9] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[10] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[11] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[12] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[13] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[14] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[15] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.