Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1432-1440    DOI: 10.11900/0412.1961.2016.00052
  本期目录 | 过刊浏览 |
Ni-W-Cu-P沉积机制及在酸性溶液中的腐蚀行为*
方信贤1,2(),薛亚军1,戴玉明1,王章忠1,2
1 南京工程学院江苏省先进结构材料与应用技术重点实验室, 南京 211167
2 南京工程学院材料工程学院, 南京 211167
DEPOSITION MECHANISM OF Ni-W-Cu-P COATING AND ITS CORROSION BEHAVIOR IN ACID SOLUTION
Xinxian FANG1,2(),Yajun XUE1,Yuming DAI1,Zhangzhong WANG1,2
1 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
2 School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
引用本文:

方信贤,薛亚军,戴玉明,王章忠. Ni-W-Cu-P沉积机制及在酸性溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(11): 1432-1440.
Xinxian FANG, Yajun XUE, Yuming DAI, Zhangzhong WANG. DEPOSITION MECHANISM OF Ni-W-Cu-P COATING AND ITS CORROSION BEHAVIOR IN ACID SOLUTION[J]. Acta Metall Sin, 2016, 52(11): 1432-1440.

全文: PDF(1904 KB)   HTML
摘要: 

分别采用浸泡和电化学实验方法对Ni-W-Cu-P镀层在常温和高温20%H2SO4溶液中的耐蚀性进行了研究, 用SEM, EDS及XRD对镀层的沉积机制、成分结构进行了分析. 结果表明: 球形Ni-W-Cu-P核心合并生长形成条状组织; 共沉积W和Cu可显著提高Ni-W-Cu-P非晶的热稳定性; 400 ℃热处理非晶的耐蚀性优于镀态非晶和500 ℃热处理纳米晶的; 延长腐蚀时间, 非晶和纳米晶镀层的腐蚀速率和腐蚀电流密度增大, 阻抗则下降; Ni-W-Cu-P非晶和纳米晶镀层的腐蚀机制分别是选择性腐蚀和点腐蚀.

关键词 Ni-W-Cu-P镀层,沉积机制,酸性腐蚀介质,腐蚀机制,阻抗谱    
Abstract

The application of steel in acidic media faces a big challenge due to the corrosion problem. Quaternary Ni-W-Cu-P alloy act as a potential coating material applied to acidic media because of its superior corrosion resistance. However, mechanism of deposition and corrosion of Ni-W-Cu-P coating plated on the surface of steel component is rare in the previous studies. In this work, the Ni-W-Cu-P coatings were deposited onto carbon steel 65Mn substrates via electroless plating. The anti-corrosion properties of the coatings in room and warm acidic solution (20%H2SO4) were evaluated by dipping and electrochemical test, respectively. Their deposition mechanism, composition and structure were investigated using SEM, EDS and XRD, respectively. The results show that the Ni-W-Cu-P coating is composed of spherical and block particles in the early stage of electroless plating, which are gradually transformed into spherical and strip cellular structure with the increasing electroless plating time. With prolonging electroless plating time, the Ni and W contents in the Ni-W-Cu-P coatings increase logarithmically and lineally, respectively. However, the Cu content decreases logarithmically, the P content reaches the maximum value after electroless plating for 60 min and then gradually decreases. The Ni-W-Cu-P coating is amorphous when it is annealed at low temperature, upon increasing the annealing temperature to over 400 ℃, it gradually transforms from amorphous to crystalline. The thermal stability of Ni-W-Cu-P coating can be significantly improved by co-depositing tungsten and copper element. Corrosion resistance of the amorphous coating annealed at 400 ℃ is better than that of amorphous coating as-plated and nanometer crystalline coating annealed at 500 ℃ in both room and warm acid solution. As-plated coatings and those annealed at 400 ℃ are found to corrode selectively, while pitting is observed to be the main corrosion mechanism of coatings annealed at 500 ℃. With increasing the corrosion time, the corrosion rates and corrosion current densities of the Ni-W-Cu-P coatings increase, however, their impedance values decrease.

Key wordsNi-W-Cu-P    coating,    deposition    mechanism,    acidic    corrosion    medium,    corrosion    mechanism,    impedance    spectrum
收稿日期: 2016-02-01     
基金资助:* 国家自然科学基金项目51301088, 江苏省先进结构材料与应用技术重点实验室开放基金项目ASMA201414, 以及南京工程学院重大科技创新基金项目CKJA201202资助
图1  化学镀不同时间Ni-W-Cu-P镀层的SEM像
Zone Ni W Cu P Fe
A 9.18 1.83 4.56 1.17 83.26
B 18.99 1.11 11.14 2.31 66.45
C 10.67 2.98 5.93 1.50 78.92
D 26.54 7.32 14.85 3.59 47.70
F 57.43 6.04 20.74 3.49 12.30
G 55.18 4.75 19.63 6.37 14.07
H 61.18 6.74 19.78 7.67 4.63
I 63.64 4.94 19.49 6.41 5.52
表1  图1中Ni-W-Cu-P镀层不同特征区的EDS结果
图2  Ni-W-Cu-P镀层成分随化学镀时间的变化
图3  不同温度热处理后Ni-W-Cu-P镀层的XRD谱
图4  不同温度热处理Ni-W-Cu-P镀层的腐蚀速率随浸泡时间变化曲线
Structure Ni W Cu P O
NP 74.58 10.04 8.48 6.90 -
M 71.40 11.60 10.06 6.94 -
WCS 80.14 6.32 3.91 7.21 2.42
GCS 74.55 12.03 6.32 7.10 0.00
CS 75.30 10.62 4.17 4.40 5.51
WS 77.17 8.66 3.82 4.35 6.00
GS 72.56 13.26 6.60 7.58 0.00
表2  图5中腐蚀试样表面不同组织的EDS结果
图5  Ni-W-Cu-P镀层腐蚀不同时间后的表面形貌
图6  不同温度热处理的Ni-W-Cu-P镀层极化曲线
图7  Ni-W-Cu-P镀层的Bode图及其阻抗随腐蚀时间的变化曲线
Coating 0 h 34 h 56 h 80 h 152 h 224 h
As-plated 0.88 4.07 30.28 62.10 77.10 463.10
Annealed at 400 ℃ 1.17 1.39 1.57 1.63 2.31 2.17
Annealed at 500 ℃ 0.71 0.72 2.57 3.54 292.90 1040.00
表3  在20%H2SO4溶液中腐蚀不同时间后Ni-W-Cu-P镀层的腐蚀电流密度
图8  Ni-W-Cu-P镀层腐蚀224 h后的SEM像
Zone Ni W Cu P O Fe S
A 37.03 18.87 8.38 15.59 12.53 7.60 -
B 30.51 24.63 13.27 13.99 10.30 2.04 5.26
C 58.04 14.45 4.88 11.37 7.90 3.36 -
D 71.78 4.78 7.73 11.26 3.41 1.04 -
E 68.75 7.42 7.03 11.55 4.43 0.82 -
表4  图8中腐蚀试样表面不同特征区的EDS结果
[1] Fang X X, Zhen R, Xue Y J, Wang Z Z.Chin J Mater Res, 2011; 25: 172
[1] (方信贤, 甄睿, 薛亚军, 王章忠. 材料研究学报, 2011; 25: 172)
[2] Fang X X, Ba Z X, Zhen R, Wang Z Z.Trans Mater Treat, 2014; 35: 180
[2] (方信贤, 巴志新, 甄睿, 王章忠. 材料热处理学报, 2014; 35: 180)
[3] Abdel Salam H, Shoeib M A, Hady H, Abdel Salam O F.Surf Coat Technol, 2007; 202: 162
[4] Nalaraju J B, Ezhil Selvi V, William Grips V K, Rajam K S.Electrochim Acta, 2006; 52: 1064
[5] Song J F, Guo K M, Zhao Z H.Chin J Nonferrous Met, 1998; 8: 379
[5] (宋锦福, 郭凯铭, 赵子辉. 中国有色金属学报, 1998; 8: 379)
[6] Gao Y, Zheng Z J, Zhu M, Lu C P.Mater Sci Eng, 2004; A381: 98
[7] Tien S K, Duh J G. Thin Solid Films#/magtechI#, 2004; 469-170: 268
[8] Balaraju J N, Millath Jahan S, Rajam K S.Surf Coat Technol, 2006; 201: 507
[9] Palaniappa M, Seshadri S K.Wear, 2008; 265: 735
[10] He F J, Fang Y Z, Jin S J.Wear, 2014; 311: 14
[11] Palaniappa M, Seshadri S K. Mater Sci Eng#/magtechI#, 2007; A460-461: 638
[12] He S Z, Huang X M, Zheng H M, Li P, Lin Z P, Shan C L.Tribology, 2009; 29: 362
[12] (何素珍, 黄新民, 郑华明, 李鹏, 林志平, 单传丽. 摩擦学学报, 2009; 29: 362)
[13] Fang X X, Bai Y Q, Wang Z Z.Acta Metall Sin, 2010; 46: 239
[13] (方信贤, 白允强, 王章忠. 金属学报, 2010; 46: 239)
[14] Liu G C, Yang L J, Wang L D, Wang S L, Liu C Y, Wang J.Surf Coat Technol, 2010; 204: 3382
[15] Balaraju J N, Rajam K S.Surf Coat Technol, 2005; 195: 154
[16] Nee C C, Weil R.Surf Technol, 1985; 25: 7
[17] Balaraju J N, Kalavati, Rajam K S.Surf Coat Technol, 2010; 205: 575
[18] Fang X X, Zhou H Z, Xue Y J.Trans Nonferrous Met Soc China, 2015; 25: 2594
[19] He S Z, Huang X M.Trans Mater Treat, 2010; 31: 133
[19] (何素珍, 黄新民. 材料热处理学报, 2010; 31: 133)
[20] Liu H, Guo R X, Li S, Zong Y, He B Q.Chin J Nonferrous Met, 2011; 21: 1936
[20] (刘宏, 郭荣新, 李莎, 宗云, 何冰清. 中国有色金属学报, 2011; 21: 1936)
[21] Liu H, Guo R X, Liu Y, Thompson G E, Liu Z.Surf Coat Technol, 2012; 206: 3350
[22] Liu H, Viejo F, Guo R X, Glenday S, Liu S.Surf Coat Technol, 2010; 204: 1549
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[3] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[4] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[5] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
[6] 魏亮, 庞晓露, 高克玮. X65钢在含超临界CO2的NaCl溶液中腐蚀机制的讨论*[J]. 金属学报, 2015, 51(6): 701-712.
[7] 魏仁超, 许凤玲, 蔺存国, 唐晓, 李焰. 远青弧菌、硫酸盐还原菌及其混合菌种作用下 B10合金的海水腐蚀行为[J]. 金属学报, 2014, 50(12): 1461-1470.
[8] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[9] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[10] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[11] 赵博 杜翠薇 刘智勇 李晓刚 杨吉可 李月强. 剥离涂层下的X80钢在鹰潭土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2012, 48(12): 1530-1536.
[12] 张杰 宋秀霞 栾鑫 孙彩霞 段继周 侯保荣. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响[J]. 金属学报, 2012, 48(12): 1495-1502.
[13] 郭少强 许立宁 常炜 密雅荣 路民旭. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47(8): 1067-1074.
[14] 黄发 王俭秋 韩恩厚 柯伟. 硼酸缓冲溶液中Cl-浓度和温度对690合金腐蚀行为的影响[J]. 金属学报, 2011, 47(7): 809-815.
[15] 王长罡 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和Cl-浓度对Cu腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 354-360.