Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1123-1132    DOI: 10.11900/0412.1961.2016.00051
  论文 本期目录 | 过刊浏览 |
AZ80镁合金动态再结晶软化行为研究*
蔡贇1,孙朝阳1(),万李2,阳代军2,周庆军2,苏泽兴1
1 北京科技大学机械工程学院, 北京 100083
2 首都航天机械公司, 北京 100076
STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY
Yun CAI1,Chaoyang SUN1(),Li WAN2,Daijun YANG2,Qingjun ZHOU2,Zexing SU1
1 School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Capital Aerospace Machinery Company, Beijing 100076, China
引用本文:

蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
Yun CAI, Chaoyang SUN, Li WAN, Daijun YANG, Qingjun ZHOU, Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. Acta Metall Sin, 2016, 52(9): 1123-1132.

全文: PDF(1457 KB)   HTML
摘要: 

采用等温压缩实验获得了变形温度为200~400 ℃, 应变速率为0.001~1 s-1的AZ80镁合金的流变应力曲线, 考虑动态硬化及软化特性描述了AZ80镁合金热变形过程动态再结晶主导的软化行为. 提出基于动态材料模型的应变速率敏感性指数表征动态再结晶引起的能量耗散, 该指数通过引入动态再结晶体积分数描述微观组织演化的耗散功. 考虑变形温度和应变速率构建了不同应变的应变速率敏感性指数图, 实现应变速率敏感性指数对动态再结晶软化行为的量化表征. 在此基础上, 研究了变形温度、应变速率对动态再结晶临界条件及演化过程的影响, 重点分析了不同应变的应变速率敏感性指数图特征. 结果表明: 随着变形温度的升高和应变速率的降低, 动态再结晶软化临界应变减小, 动态再结晶体积分数增加; 应变速率敏感性指数与动态再结晶体积分数正相关, 指数大于0.21的区域对应着高动态再结晶体积分数, 且均位于低应变速率下, 并通过动态再结晶软化的微观组织进行了验证.

关键词 镁合金动态再结晶变形行为应变速率敏感性    
Abstract

Magnesium alloys are considered as one of the lightest structural metallic materials with excellent properties such as high specific strength, superior damping characteristics and electromagnetic shielding performance. In order to improve the mechanical properties of magnesium alloys, the hot rolling, hot extrusion and other hot forming processes are often introduced to produce the high performance parts. Both of the two softening mechanisms, dynamic recovery and dynamic recrystallization (DRX), occur during the hot deformation. As an important softening mechanism in hot processing, DRX is beneficial to obtaining fine grains structure, eliminating defects and improving mechanical properties for magnesium alloys. In this work, isothermal compression tests of AZ80 magnesium alloy were conducted on Gleeble thermo-mechanical simulator in the temperature range of 200 to 400 ℃ and strain rate range of 0.001 to 1 s-1. In view of the dynamic hardening and softening mechanisms, the softening behavior of AZ80 magnesium alloy, dominated by dynamic recrystallization, was depicted. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution which was indicated by the strain rate sensitivity value based on the dynamic material model. To quantify the dynamic recrystallization softening behavior by the strain rate sensitivity (SRS) value, the SRS value distribution maps were constructed depending on various temperatures and strain rates. Therefore, the critical conditions and evolution process were studied in terms of temperatures and strain rates, while features of the SRS value distribution maps at different strains were deeply investigated. It can be concluded that the value of dynamic recrystallization critical condition decreases and dynamic recrystallization volume fraction increases when the temperature increases and strain rate decreases during the deformation. The strain rate sensitivity was positive correlated with the dynamic recrystallization volume fraction. It has been verified effectively by the analysis of microstructure that the region in which the strain rate sensitivity value is above 0.21 corresponds to the higher dynamic recrystallization volume fraction and lower strain rate.

Key wordsmagnesium alloy    dynamic recrystallization    deformation behavior    strain rate sensitivity
收稿日期: 2016-02-01     
基金资助:* 国家自然科学基金委员会-中国工程物理研究院联合基金项目U1330121, 国家自然科学基金项目51575039, 以及中南大学高性能复杂制造国家重点实验室开放课题基金项目Kfkt2015-01资助
图1  AZ80镁合金的动态回复型流变应力曲线及θ-ε曲线
图2  AZ80镁合金不同应变速率下的流变应力曲线
图3  变形温度250 ℃和应变速率0.1 s-1时AZ80镁合金的θ-σ及-(?θ/?σ)-σ曲线
图4  不同热变形条件下AZ80镁合金的θ-σ曲线及-?θ/?σ)-σ曲线
图5  σss, σc和σsat与σp的关系
图6  AZ80镁合金动态再结晶动力学模型参数k和n的确定
图7  AZ80镁合金动态再结晶体积分数演化规律
图8  应变为0.6和0.9时AZ80镁合金的SRS指数m分布
图9  典型热变形条件下AZ80镁合金的微观组织
[1] Yang Z, Li J P, Zhang J X, Lorimer G W, Robson J.Acta Metall Sin (Engl Lett), 2008; 21: 313
[2] Sun C Y, Luan J D, Liu G, Li R, Zhang Q D.Acta Metall Sin, 2012; 48: 853
[2] (孙朝阳, 栾京东, 刘赓, 李瑞, 张清东. 金属学报, 2012; 48: 853)
[3] Aghion E, Bronfin B, Eliezer D.J Mater Process Technol, 2001; 117: 381
[4] Lu S Q, Wang K L, Li X, Liu S B.Acta Metall Sin, 2014; 50: 1128
[4] (鲁世强, 王克鲁, 李鑫, 刘诗彪. 金属学报, 2014; 50: 1128)
[5] Mostafaei M A, Kazeminezhad M.Mater Sci Eng, 2012; A544: 88
[6] Jorge Jr A M, Regone W, Balancin O.J Mater Process Technol, 2003; 142: 415
[7] Liang H Q, Guo H Z, Ning Y Q, Yao Z K, Zhao Z L.Acta Metall Sin, 2014; 50: 871
[7] (梁后权, 郭鸿镇, 宁永权, 姚泽坤, 赵张龙. 金属学报, 2014; 50: 871)
[8] Galiyev A, Kaibyshev R, Gottstein G.Acta Mater, 2001; 49: 1199
[9] Yang X Y, Zhang Z L, Zhang L, Wu X X, Wang J.Chin J Nonferrous Met, 2011; 21: 1801
[9] (杨续跃, 张之岭, 张雷, 吴新星, 王军. 中国有色金属学报, 2011; 21: 1801)
[10] Li H Z, Wei X Y, Ou Yang J, Jiang J, Li Y.Trans Nonferrous Met Soc Chin, 2013; 23: 3180
[11] Luan N, Li L X, Li G Y, Zhong Z H.Chin J Nonferrous Met, 2007; 17: 1678
[11] (栾娜, 李落星, 李光耀, 钟志华. 中国有色金属学报, 2007; 17: 1678)
[12] Yang Y S, Yang M, Guo J Q.Hot Work Technol, 2011; 40(24): 82
[12] (杨永顺, 杨明, 郭俊卿. 热加工工艺, 2011; 40(24): 82)
[13] Xu Y, Hu L X, Sun Y.J Alloys Compd, 2013; 580: 262
[14] Kwak T Y, Kim W J.Mater Sci Eng, 2014; A615: 222
[15] Zhou H T, Li Q B, Zhao Z K, Liu Z C, Wen S F, Wang Q D.Mater Sci Eng, 2010; A527: 2022
[16] Huang S H, Zhao Z D, Xia Z X, Cai H Y, Kang F, Hu Z K, Shu D Y.Rare Met Mater Eng, 2010; 39: 848
[16] (黄树海, 赵祖德, 夏志新, 蔡海艳, 康凤, 胡传凯, 舒大禹. 稀有金属材料与工程, 2010; 39: 848)
[17] Bussiba A, Ben Artzy A, Shtechman A, Ifergan S, Kupiec M.Mater Sci Eng, 2001; A302: 56
[18] Lin Y C, Chen X M, Wen D X, Chen M S.Comput Mater Sci, 2014; 83: 282
[19] Estrin Y, Mecking H.Acta Mater, 1984; 32: 57
[20] Mecking H, Kocks U F.Acta Mater, 1981; 29: 1865
[21] Bambach M.Acta Mater, 2013; 61: 6222
[22] Liang H Q, Guo H Z, Ning Y Q, Peng X N, Qin C, Shi Z F, Nan Y.Mater Des, 2014; 63: 789
[23] Poliak E I, Jonas J J.Acta Mater, 1996; 44: 127
[24] He Y B, Pan Q L, Tan Y J, Liu X Y, Li W B.Chin J Nonferrous Met, 2011; 21: 1205
[24] (何运斌, 潘清林, 覃银江, 刘晓艳, 李文斌. 中国有色金属学报, 2011; 21: 1205)
[25] Ponge D, Gottstein G.Acta Mater, 1998; 46: 69
[26] Picu R C.Acta Mater, 2004; 52: 3447
[27] Les P, Stuewe H P, Zehetbauer M. Mater Sci Eng, 1997;A234-236: 453
[28] Tang W N, Chen R S, Han E-H.Acta Metall Sin, 2006; 42: 1096
[28] (唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)
[29] Cao Y, Di H S, Zhang J Q, Ma T J, Zhang J C.Acta Metall Sin, 2013; 49: 811
[29] (曹宇, 邸洪双, 张敬奇, 马天军, 张洁岑. 金属学报, 2013; 49: 811)
[30] Les P, Stuewe H P, Zehetbauer M. Mater Sci Eng, 1997; A234-236: 453
[31] Liang H Q, Nan Y, Ning Y Q, Li H, Zhang J L, Shi Z F, Guo H Z.J Alloys Compd, 2015; 632: 478
[32] Yang F Q, Song R B, Zhang C.Proc Eng, 2014; 81: 456
[33] Biswas A, Singh G, Sarkar S K, Krishnan M, Ramamurty U.Intermetallics, 2014; 54: 69
[34] Lin Y C, Wen D X, Deng J, Liu G, Chen J.Mater Des, 2014; 59: 115
[35] Jenab A, Karimi Taheri A.Int J Mech Sci, 2014; 78: 97
[36] Rao K P, Zhong T, Prasad Y V R K, Suresh K, Gupta M.Mater Sci Eng, 2015; A644: 184
[37] Lv B J, Peng J, Shi D W, Tang A T, Pan F S.Mater Sci Eng, 2013; A560: 727
[38] Sun C Y, Liu G, Zhang Q D, Li R, Wang L L.Mater Sci Eng, 2014; A595: 92
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[9] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[10] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[11] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[12] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[13] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[15] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.