Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1503-1509    DOI: 10.11900/0412.1961.2016.00050
  本期目录 | 过刊浏览 |
7050铝合金淬火敏感性研究和微观组织分析*
吴书舟1,易幼平1,黄始全1(),李俊1,李晨2
1 中南大学机电工程学院高性能复杂制造国家重点实验室, 长沙 410083
2 中航工业第一飞机设计研究院, 西安 710089
RESERCH ON QUENCH SENSITIVITY AND MICROSTRUCTURE ANALYSIS OF 7050 ALUMINUM ALLOY
Shuzhou WU1,Youping YI1,Shiquan HUANG1(),Jun LI1,Chen LI2
1 State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
2 The First Aircraft Institute of AVIC, Xi'an 710089, China
全文: PDF(4956 KB)   HTML  
摘要: 

通过分级淬火方法测定了7050铝合金的TTT曲线, 采用TEM和JMA方程等分析手段研究了固溶、等温淬火和时效过程中微观组织的演变规律及其动力学特性. 结果表明, 合金TTT曲线的鼻尖温度在330 ℃附近, 淬火敏感区间为300~380 ℃, 高温区(400~450 ℃)淬火敏感性低于低温区(210~270 ℃); 等温保温过程中过饱和固溶体主要析出以Al3Zr粒子为形核核心的片层状η平衡相及少量针状S相, 随保温时间延长析出相体积分数快速增加, 同时在晶界排列变得连续而粗化、无沉淀析出带(PFZ)宽化, 在远离鼻尖的温度下保温合金析出速率减慢, 在晶界排布连续化和粗化程度降低; JMA方程中反映析出相形态的常数n在0.50~0.65的范围内, 析出相特征以片层状相为主、针状相为辅.

关键词 7050铝合金,TTT曲线,淬火敏感性,相变动力学,微观组织    
Abstract

7050 aluminum alloy is an important structural material widely used in aerospace industry with a high quench sensitivity. In this work, the time-temperature-transformation (TTT) curves of 7050 aluminum alloy were determined by interrupted quench method. The microstructure evolution and phase transformation kinetics during solid solution, isothermal quenching, ageing treatment were studied by TEM and JMA equation.The results show that the nose temperature of TTT curves is about 330 ℃, with the quench sensitivity range of 300~380 ℃. The quenching sensitivity of high temperature range of 400~450 ℃ is lower than that of low temperature range of 210~270 ℃. The laminar equilibrium η phases characterized with nucleus of Al3Zr particles and several needle-shaped S phases are the main precipitations of the supersaturated solid solution decomposes during isothermal holding process. With the increase of holding time, the volume fraction of precipitated phases rises quickly, which coarsen the grain boundary continuously and broaden precipitation free zone (PFZ). While holding far away from the nose temperature, the speed of precipitation slow down and the degree of continuity and coarsening of grain boundary decrease. The values of n in JMA equation vary from 0.50 to 0.65, indicating that the precipitations are mainly laminar precipitated phases and supplementarily needle-shaped phases.

Key words7050    aluminum    alloy,    TTT    curve,    quench    sensitivity,    phase    transformation    kinetics,    microstructure
收稿日期: 2016-02-01      出版日期: 2016-07-11
基金资助:*国家重点基础研究发展计划项目2012CB619504, 国家国际科技合作专项项目2014DFA51250, 以及高性能复杂制造国家重点实验室项目zzyjkt2014-02资助

引用本文:

吴书舟,易幼平,黄始全,李俊,李晨. 7050铝合金淬火敏感性研究和微观组织分析*[J]. 金属学报, 2016, 52(12): 1503-1509.
Shuzhou WU,Youping YI,Shiquan HUANG,Jun LI,Chen LI. RESERCH ON QUENCH SENSITIVITY AND MICROSTRUCTURE ANALYSIS OF 7050 ALUMINUM ALLOY. Acta Metall, 2016, 52(12): 1503-1509.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00050      或      http://www.ams.org.cn/CN/Y2016/V52/I12/1503

图1  7050铝合金锻件金相组织
图2  不同等温温度下等温时间对等温淬火态合金电导率的影响
图3  7050铝合金等温保温过程的时间-温度-转化率(TTT)曲线
Temperature / ℃ k n
250 0.012 0.632
270 0.021 0.617
300 0.028 0.635
315 0.036 0.617
330 0.056 0.536
360 0.041 0.534
380 0.025 0.551
400 0.018 0.533
420 0.010 0.567
表1  7050铝合金S曲线的拟合参数
图4  7050铝合金的等温转变S曲线
图5  330 ℃保温不同时间后淬火态合金的TEM像
图6  不同温度下保温300 s时效态合金的TEM像
[1] Wang Z T, Tian R Z.Aluminum Alloy and Processing Handbook. Changsha: Central South University of Technology Press, 1989: 34
[1] (王祝堂, 田荣璋. 铝合金及其加工手册. 长沙: 中南工业大学出版社, 1989: 34)
[2] Zhang X M, Deng Y L, Zhang Y.Acta Metall Sin, 2015; 51: 268
[2] (张新明, 邓运来, 张勇. 金属学报, 2015; 51: 268)
[3] Li C G, Wu S J, Dai S L.Trans Nonferrous Met Soc China, 2002; 12: 15
[3] (李成功, 巫世杰, 戴圣龙. 中国有色金属学报, 2002; 12: 15)
[4] Sampson D S, translated by Hong R X. Album of Deformation Aluminum Alloy in Modern Times. Beijing: Metallurgy Industry Press, 1987: 97
[4] (Sampson D S 著, 洪仁先译. 国外近代变形铝合金专集. 北京: 冶金工业出版社, 1987: 97)
[5] Liu Y Z, Li Z L, Gu C X.Acta Metall Sin, 2013; 49: 1598
[5] (刘允中, 李志龙, 顾才鑫. 金属学报, 2013; 49: 1598)
[6] Dumont D, Deschamps A, Brechet Y.Acta Mater, 2004; 52: 2529
[7] Deschamps A, Brechet Y.Scr Mater, 1998; 39: 1517
[8] Thomson D S, Subramanya B S, Levy S A.Metall Trans, 1971; 2: 1149
[9] Conserva M, Russo E D, Caloni O.Metall Trans, 1971; 2: 1227
[10] Gong H, Wu Y X, Liao K.J Mater Eng, 2010; (1): 42
[10] (龚海, 吴运新, 廖凯. 材料工程, 2010; (1): 42)
[11] Davydov V G, Ber L B, Ananiev V N.In: Fridlyander I N ed., Proc 5th Int Conf on Aluminum Alloys, Amsterdam: Kluwer Academic Publishers-Plenum Publishers, 1996: 859
[12] Alekseev A A, Ber L B.Light Alloys Technol, 1993; 5: 18
[13] Archambault P, Godard D.Scr Mater, 2000; 42: 675
[14] Li S L, Huang Z Q, Chen W P, Liu Z M, Qi W J.Trans Mater Heat Treat, 2013; 34(4): 57
[14] (李慎兰, 黄志其, 陈维平, 刘志铭, 戚文军. 材料热处理学报, 2013; 34(4): 57)
[15] Wang G, Yin Z M, Zhao K, Duan J Q, Liu B, Shang B C.Mater Sci Technol, 2011; 19(4): 84
[15] (王岗, 尹志民, 赵凯, 段佳琦, 刘博, 商宝川. 材料科学与工艺, 2011; 19(4): 84)
[16] Robinson J S, Cudd R L, Tanner D A.J Mater Process Technol, 2001; 119: 261
[17] Chen L, Yu Y N.Phase Transformations in Metals and Alloys. Beijing: Higher Education Press, 2011: 233
[17] (陈冷, 余永宁. 金属和合金中的相变. 北京: 高等教育出版社, 2011: 233)
[18] Staley J T.Mater Sci Technol, 1987; 3: 923
[19] Christian J W.The Theory of Transformations in Metals and Alloys. Oxford: Pergamon Press, 1975: 58
[20] Liu S D, Zhang X M, You J H, Huang Z B, Zhang C, Zhang X Y.Trans Nonferrous Met Soc China, 2006; 12: 2034
[20] (刘胜胆, 张新明, 游江海, 黄振宝, 张翀, 张小艳. 中国有色金属学报, 2006; 12: 2034)
[21] Li P Y, Xiong B Q, Zhang Y A, Li Z H, Zhu B H, Wang F, Liu H W.Trans Nonferrous Met Soc China, 2011; 21: 513
[21] (李培跃, 熊柏青, 张永安, 李志辉, 朱宝宏, 王锋, 刘红伟. 中国有色金属学报, 2011; 21: 513)
[22] Liu W J.PhD Dissertation, Central South University, Changsha, 2011
[22] (刘文军. 中南大学博士学位论文, 长沙, 2011)
[23] Chen H.Master Thesis, Central South University, Changsha, 201
[23] (陈慧. 中南大学硕士学位论文, 长沙, 2012)
[24] Dai X Y.PhD Dissertation, Central South University, Changsha, 2008
[24] (戴晓元. 中南大学博士学位论文, 长沙, 2008)
[25] Godard D, Archambault P, Aeby-Gautier E. Acta Mater, 2002; 50: 2319
[26] Tang J G, Chen H, Zhang X M, Liu S D, Liu W J, Ouyang H, Li H P.Trans Nonferrous Met Soc China, 2012; 22: 1255
[27] Tian F Q, Cui J Z.Trans Nonferrous Met Soc China, 2006; 16: 958
[27] (田福泉, 崔建忠. 中国有色金属学报, 2006; 16: 958)
[1] 周野,毛萍莉,王志,刘正,王峰. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究[J]. 金属学报, 2017, 53(7): 851-860.
[2] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[3] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[4] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[5] 王刚,徐磊,崔玉友,杨锐. TiAl预合金粉末热等静压致密化机理及热处理对微观组织的影响*[J]. 金属学报, 2016, 52(9): 1079-1088.
[6] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[7] 史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
[8] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
[9] 孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*[J]. 金属学报, 2016, 52(7): 875-882.
[10] 孟帅举,余晖,张慧星,崔红卫,王志峰,赵维民. Bi添加对挤压纯Mg组织和力学性能的影响*[J]. 金属学报, 2016, 52(7): 811-820.
[11] 左小伟,郭睿,安佰灵,张林,王恩刚. 横向磁场下定向凝固Cu-6%Ag合金的组织、硬度和电阻率*[J]. 金属学报, 2016, 52(2): 143-150.
[12] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[13] 乔岩欣,周洋,陈书锦,宋亓宁. 双轴肩搅拌摩擦焊对6061-T6铝合金表面组织及其在3.5%NaCl中腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1395-1402.
[14] 柏琳娜,刘福平,王邃,江峰,孙军,陈良斌,王丰元. Fe-C-Cu粉末锻造汽车发动机连杆的组织与力学性能*[J]. 金属学报, 2016, 52(1): 41-50.
[15] 顾伟,李静媛,王一德. 晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能的影响*[J]. 金属学报, 2016, 52(1): 51-59.