Please wait a minute...
金属学报  2016, Vol. 52 Issue (12): 1565-1571    DOI: 10.11900/0412.1961.2016.00043
  本期目录 | 过刊浏览 |
Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*
张骏1,2,姚美意1,2(),冯炫凯1,2,王志刚1,2,黄娇1,2,戴训3,张金龙1,2,周邦新1,2
1 上海大学材料研究所, 上海 2000722 上海大学微结构重点实验室, 上海 2004443 中国核动力研究设计院反应堆燃料及材料重点实验室, 成都 610213
INVESTIGATION ON THE CORROSIVE ANISOTROPY OF Zr-Sn-Fe-Cr-(Nb) ALLOYS IN 500 ℃ SUPER-HEATED STEAM
Jun ZHANG1,2,Meiyi YAO1,2(),Xuankai FENG1,2,Zhigang WANG1,2,Jiao HUANG1,2,Xun DAI3,Jinlong ZHANG1,2,Bangxin ZHOU1,2
1 Institute of Materials, Shanghai University, Shanghai 200072, China
2 Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
3 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
引用本文:

张骏,姚美意,冯炫凯,王志刚,黄娇,戴训,张金龙,周邦新. Zr-Sn-Fe-Cr-(Nb)合金在500 ℃过热蒸汽中的腐蚀各向异性研究*[J]. 金属学报, 2016, 52(12): 1565-1571.
Jun ZHANG, Meiyi YAO, Xuankai FENG, Zhigang WANG, Jiao HUANG, Xun DAI, Jinlong ZHANG, Bangxin ZHOU. INVESTIGATION ON THE CORROSIVE ANISOTROPY OF Zr-Sn-Fe-Cr-(Nb) ALLOYS IN 500 ℃ SUPER-HEATED STEAM[J]. Acta Metall Sin, 2016, 52(12): 1565-1571.

全文: PDF(5857 KB)   HTML
摘要: 

选用无织构的Zr-0.72Sn-0.32Fe-0.14Cr和 Zr-0.85Sn-0.16Nb-0.37Fe-0.18Cr合金大晶粒片状样品, 利用静态高压釜在500 ℃, 10.3 MPa过热蒸汽中进行500 h的腐蚀实验, 采用EBSD, SEM和TEM等方法研究了合金的显微组织以及氧化膜的厚度与金属晶粒表面取向的关系. 结果表明, Nb对第二相的晶体结构产生影响, Zr-0.72Sn-0.32Fe-0.14Cr合金中的第二相主要为fcc的Zr(Fe, Cr)2, 而Zr-0.85Sn-0.16Nb-0.37Fe-0.18Cr合金中的第二相为fcc和hcp的Zr(Nb, Fe, Cr)2; 2种合金均未出现疖状腐蚀, 并且不同金属晶粒取向上的氧化膜厚度没有明显差别, 即没有表现出腐蚀各向异性特征.

关键词 锆合金,第二相,耐腐蚀性,腐蚀各向异性,显微组织    
Abstract

Zirconium alloys are widely used as nuclear fuel cladding in water reactors because of their low cross-section for thermal neutron absorption, reasonable mechanical properties and adequate corrosion resistance in high temperature water. Zirconium alloys have a prominent anisotropic characteristic because of the hexagonal close-packed crystal structure. The anisotropic growth of oxide layers is related to corrosion conditions and chemical composition of zirconium alloys. The corrosive anisotropy of Zr-0.72Sn-0.32Fe-0.14Cr and Zr-0.85Sn-0.16Nb-0.37Fe-0.18Cr coarse-grained specimens was investigated in a superheated steam at 500 ℃ and 10.3 MPa by autoclave tests. EBSD, SEM and TEM were used to investigate the microstructures of the alloys and the relationship between the oxide thickness and the grain orientation of the metal matrix. Results showed that the structures of second phase particles (SPPs) can be affected by Nb: the face-centered cubic Zr(Fe, Cr)2 precipitates were mainly detected in Zr-0.72Sn-0.32Fe-0.14Cr alloy, while the face-centered cubic and hexagonal close packed Zr(Nb, Fe, Cr)2 precipitates were observed in the Zr-0.85Sn-0.16Nb-0.37Fe-0.18Cr alloy. No nodular corrosion appeared on the two alloys for 500 h exposure. There was no big difference between the thickness of oxide layers and the grain orientations, i.e. no corrosive anisotropy of the two alloys was presented.

Key wordszirconium    alloy,    SPPs,    corrosion    resistance,    corrosive    anisotropy,    microstructure
收稿日期: 2016-01-26     
基金资助:* 国家自然科学基金项目51471102和中国核动力研究设计院反应堆燃料及材料重点实验室项目STRFML-2015-01资助
图1  合金大晶粒样品的(0001)极图
图2  腐蚀前合金大晶粒样品显微组织的SEM像
图3  合金A和B大晶粒样品中典型的第二相信息
图4  2种合金大晶粒样品在500 ℃, 10.3 MPa过热蒸汽中的腐蚀增重随时间的变化曲线
图5  合金A和B大晶粒样品在500 ℃, 10.3 MPa过热蒸汽中腐蚀500 h后的氧化膜断口形貌
图6  合金A大晶粒样品在500 ℃过热蒸汽中腐蚀500 h的氧化膜厚度与金属晶粒表面取向关系的反极图
图7  合金B大晶粒样品在500 ℃过热蒸汽中腐蚀500 h后的氧化膜厚度与金属晶粒表面取向关系的反极图
[1] Liu J Z. Nuclear Structure Materials.Beijing: Chemical Industry Press, 2007: 19
[1] (刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 19)
[2] Zhou B X. Chin J Nucl Sci Eng, 1993; 13: 51
[2] (周邦新. 核科学与工程, 1993; 13: 51)
[3] Kim H J, Kim T H, Jeong Y H.J Nucl Mater, 2002; 306: 44
[4] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G.In: Limb?ck M, Barbéris P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Baltimore: ASTM International, 2012: 620
[5] Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q.Shanghai Met, 2008; 30(6): 1
[5] (姚美意, 周邦新, 李强, 夏爽, 刘文庆. 上海金属, 2008; 30(6): 1)
[6] Sun G C.Master Thesis, Shanghai University, 2012(孙国成, 上海大学硕士学位论文, 2012)
[7] Wang Z P, Xue Y T, Liu J N, Shi C Z, Zhang Z.J Xi′an Technol Univ, 2010; 30: 166
[7] (王正品, 薛钰婷, 刘江南, 石崇哲, 张琢. 西安工业大学学报, 2010; 30: 166)
[8] Kearns J J.J Nucl Mater, 2001; 299: 171
[9] Sun G C, Zhou B X, Yao M Y, Xie S J, Li Q.Acta Metall Sin, 2012; 48: 1103
[9] (孙国成, 周邦新, 姚美意, 谢世敬, 李强. 金属学报, 2012; 48: 1103)
[10] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L.Corros Prot, 2009; 30: 589
[10] (周邦新, 李强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)
[11] IAEA. Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. Austria: IAEA, 1998: 40
[12] Wang B Y, Zhou B X, Wang Z, Huang J, Yao M Y, Zhou J.Acta Metall Sin, 2015; 51: 1545
[12] (王波阳, 周邦新, 王桢, 黄娇, 姚美意, 周军. 金属学报, 2015; 51: 1545)
[13] Charquet D, Tricot R, Wadier, J F.In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: Eighth Symposium, ASTM STP 1023, Philadelphia: ASTM, 1989: 374
[14] Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Chu Y L.Rare Met Mater Eng, 2007; 36: 1129
[14] (周邦新, 李强, 姚美意, 夏爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1129)
[15] Foster J P, Yueh H K, Comstock R J.Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Baltimore: ASTM, 2009: 457
[16] Yueh H K, Kesterson R L, Comstock R J, Shah H H, Colburn D J, Dahlback M, Hallstadius L.In: Kammenzind B, Rudling P eds., Zirconium in the Nuclear Industry: 14th International Symposium, ASTM STP 1467, Bridgeport: ASTM, 2005: 330
[17] Wei J, Frankel P, Polatidis E, Blat M, Ambard A, Comstock R J, Hallstadius L, Hudson D, Smith G D W, Grovenor C R M, Klaus M, Cottis R A , Lyon S, Preuss M.Acta Mater, 2013; 61: 4200
[18] Woo O T, Griffiths M.J Nucl Mater, 2009; 384: 77
[19] Zhou B X, Yo M Y, Li Q, Xia S, Liu W Q, Chu Y L.Rare Met Mater Eng, 2007; 36: 1317
[19] (周邦新, 姚美意, 李强, 夏爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1317)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[4] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[5] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[6] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[7] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[8] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[9] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[11] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[12] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[13] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[14] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[15] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.