Please wait a minute...
金属学报  2016, Vol. 52 Issue (11): 1441-1448    DOI: 10.11900/0412.1961.2016.00031
  本期目录 | 过刊浏览 |
CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响*
岑升波,陈辉(),刘艳,马元明,吴影
西南交通大学材料科学与工程学院, 成都 610031
EFFECT OF CeO2 ON CORROSION BEHAVIOR OF WC-12Co COATINGS BY HIGH VELOCITY OXYGEN FUEL
Shengbo CEN,Hui CHEN(),Yan LIU,Yuanming MA,Ying WU
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
引用本文:

岑升波,陈辉,刘艳,马元明,吴影. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1441-1448.
Shengbo CEN, Hui CHEN, Yan LIU, Yuanming MA, Ying WU. EFFECT OF CeO2 ON CORROSION BEHAVIOR OF WC-12Co COATINGS BY HIGH VELOCITY OXYGEN FUEL[J]. Acta Metall Sin, 2016, 52(11): 1441-1448.

全文: PDF(1596 KB)   HTML
摘要: 

采用超音速火焰喷涂在Q345基体上制备了微米WC-12Co, 纳米改性WC-12Co和CeO2改性WC-12Co涂层, 利用SEM, XRD和显微硬度计等手段观察表征了涂层的微观组织、相成分和显微硬度, 通过LSCM, SEM, 极化实验和浸泡腐蚀实验等方法研究分析了涂层在1 mol/L H2SO4溶液中的腐蚀行为和腐蚀机理. 结果表明: 纳米CeO2的加入可以显著降低涂层的孔隙率, 有效减少局部腐蚀的发生; 同时添加纳米CeO2可以使涂层电极电位发生正移, 降低腐蚀电流密度, 生成稳定的钝化膜, 降低涂层的维钝电流密度, 提高涂层的耐腐蚀性能; 纳米CeO2改性WC-12Co涂层的腐蚀机制为由孔隙诱发的局部腐蚀, 孔隙处的Co黏结相不断被腐蚀导致WC颗粒失去了支撑作用而脱落, 从而露出新的Co黏结相, 促进了涂层的腐蚀, 使孔隙不断扩大形成腐蚀坑. 而微米WC-12Co涂层和纳米改性WC-12Co涂层不仅最外层的Co黏结相被腐蚀, 而且在孔隙处也发生了严重的局部腐蚀.

关键词 超音速火焰喷涂,WC-12Co涂层,纳米CeO2,极化曲线,浸泡腐蚀    
Abstract

High velocity oxygen fuel (HVOF) sprayed WC-Co coating has been widely used in the surface protection of components for excellent corrosion resistance and wear resistance. However, with the increasing deteriorated service environment, higher comprehensive properties of WC-Co coating are required. Addition of rare earth elements into WC-Co powder is expected to be an effective way. In this work, the micro WC-12Co, nano modified WC-12Co and CeO2 modified WC-12Co coatings were prepared by HVOF on the Q345 steel substrate. The microstructure, corrosion morphology and phase structure of coatings were observed by SEM and XRD, and the micro-hardness is measured. The corrosion behavior of the coatings in 1 mol/L H2SO4 solution was investigated by polarization test and immersion corrosion test. The results show that the addition of nano-sized CeO2 in the WC-12Co coating not only purifies the grain boundary and increases the micro hardness, but also significantly reduces the porosity of the coating, which can effectively decrease the occurrence of local corrosion. Meanwhile, the addition of nano CeO2 can make the electrode potential of coatings shift positively, reduce the corrosion current density and passivation current density, and then improve the corrosion resistance of the coating. The corrosion mechanism of nano CeO2 modified WC-12Co coating is local corrosion which induced by the pore. Co bonding phase at the pore is constantly being corroded, causing WC particles to lose the support function and to fall off, which promotes the corrosion of the coating, so that the pores are enlarged to form corrosion pits. For the micro WC-12Co coating and nano modified WC-12Co coating, not only the outermost layer of the Co bonding phase is corroded, but also serious local corrosion occurred in the pores.

Key wordshigh    velocity    oxygen    fuel    (HOVF),    WC-12Co    coating,    nano-size    CeO2,    polarization    curve,    immersion    corrosion
收稿日期: 2016-01-18     
基金资助:* 国家自然科学基金项目51474178, 51505393及中央高校基本科研业务费专项资金项目A0920502051513-4资助
Powder Code WC-Co CeO2 Power size / μm WC size / μm
Micro WC-12Co C 100% - 30~60 1~2
Nano modified WC-12Co N 100% - 15~45 0.05~0.5
CeO2 modified WC-12Co Re 99% 1% 30~60 1~2
表1  喷涂粉末成分与尺寸
图1  3种粉末的SEM像
图2  3种涂层截面SEM像
Element Atomic fraction Mass fraction
C 38.93 18.50
O 33.33 12.38
Co 15.61 21.37
W 11.60 46.07
表2  絮状物的EDS分析结果
图3  Re涂层的表面形貌
图4  3种涂层的XRD谱
Coating Corrosion potential Ecorr / mV Current density
icorr / (μAcm-2)
Initiating passivation current density iIP / (μAcm-2) Passivation current density iP / (μAcm-2)
C -734 5.92 116.3 70.3
N 47 9.37 377.2 220.3
Re 350 4.53 53.2 30.6
表3  涂层在1mol/L H2SO4溶液中的电化学参数
图5  3种涂层在H2SO4溶液中的极化曲线
图6  3种涂层浸泡前后的LSCM形貌
oating Mass variation
Δm / mg
Corrosion rate
Vc / (mgm-2h-1)
C 0.6 55.8
N 0.8 74.4
Re 0.4 37.2
表4  涂层在1 mol/LH2SO4溶液中的浸泡质量损失
图7  涂层浸泡前后的表面形貌
[1] Diomidis N, Celis J P, Ponthiaux P, Wenger F.Wear, 2010; 269: 93
[2] Cui Y J, Wang C L, Tang Z H, Zhang X Y.J Mater Eng, 2011; (11): 85
[2] (崔永静, 王长亮, 汤智慧, 张晓云. 材料工程, 2011; (11): 85)
[3] Wang Q, Chen Z H, Ding Z X.Tribol Int, 2009; 42: 1046
[4] Ibrahim A, Berndt C C.Mater Sci Eng, 2007; A456: 114
[5] Yang Q Q, Senga T, Ohmori A.Wear, 2003; 254: 23
[6] Deng C M, Han T, Zhang X F, Liu M.Therm Spray Technol, 2013; 5(4): 12
[6] (邓春明, 韩滔, 张小峰, 刘敏. 热喷涂技术, 2013; 5(4): 12)
[7] Wang X H, Liu A M, Qian S K, Jiang D Q, Zhu H S.Trans Mater Heat Treat, 2014; 35(10): 167(汪新衡, 刘安民, 钱书琨, 蒋冬青, 朱航生. 材料热处理学报, 2014; 35(10): 167)
[8] Zhang L M, Sun D B, Yu H Y, Li H Q.Mater Sci Eng, 2007; A457: 319
[9] Zhang Z Y, Lu X C, Luo J B.Appl Surf Sci, 2007; 253: 4377
[10] Chen H.PhD Dissertation, Sichuan University, Chengdu, 2008
[10] (陈辉. 四川大学博士学位论文, 成都, 2008)
[11] Ji S C, Li Z X, Du J H.Rare Met Mater Eng, 2012; 41: 2000
[11] (姬寿长, 李争显, 杜继红. 稀有金属材料与工程, 2012; 41: 2000)
[12] Rands C, Webb B W, Maynes D.Int J Heat Mass Transfer, 2006; 49: 2924
[13] De Villiers Lovelock H L.J Therm Spray Technol, 1998; 7: 357
[14] Wan Q L, Zhang L, Wang Z, Xu T, Zhang Z J.Cem Carbides, 2014; 31: 201
[14] (万庆磊, 张立, 王喆, 徐涛, 张忠健. 硬质合金, 2014; 31: 201)
[15] Li S H, Shao D C.Ordnance Mater Sci Eng, 1999; 22(6): 15
[15] (李淑华, 邵德春. 兵器材料科学与工程, 1999; 22(6): 15)
[16] Kellner F J J, KillIlan M S, Yang G, Spiecker E, Virtanen S.Int J Refract Met Hard Mater, 2011; 29: 376
[17] Sutthiruangwong S, Mori G, Kosters R.Int J Refract Met Hard Mater, 2005; 23: 129
[18] Xu Y W, Wang H M.Rare Met Mater Eng, 2007; 36: 660
[18] (徐亚伟, 王华明. 稀有金属材料与工程, 2007; 36: 660)
[19] Zhang Z Y, Wang Z P, Liang B Y.Rare Met, 2008; 27: 261
[20] Zhao T U, Cai X, Wang S X.Thin Solid Films, 2000; 379: 128
[21] Xu X R, Huang N C, Yang S M.Heat Treat Technol Equip, 2006; 27(3): 8
[21] (徐向荣, 黄拿灿, 杨少敏. 热处理技术与装备, 2006; 27(3): 8)
[22] Wang X H, Kuang J X, He H L, Zhu H S.Mater Prot, 2009; 42(2): 13
[22] (汪新衡, 匡建新, 何鹤林, 朱航生. 材料保护, 2009; 42(2): 13)
[23] Liu W J, Cao F H, Chang L R, Zhang Z, Zhang J Q.Corros Sci, 2009; 51: 1334
[24] Zhao G M, Wang K L, Li C G.J Chin Soc Rare Earths, 2004; 22: 254
[24] (赵高敏, 王昆林, 李传刚. 中国稀土学报, 2004; 22: 254)
[25] Li G H, Yan L Y, Zhang H X, Li F C. Powder Metall Technol, 1994; 12: 206
[25] (李规华, 严兰英, 张鸿绪, 李福春. 粉末冶金技术, 1994; 12: 206)
[1] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[2] 王勇, 郑玉贵, 王建强, 李美玲, 沈军. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为[J]. 金属学报, 2015, 51(1): 49-56.
[3] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[4] 白芸 李述军 郝玉琳 杨锐. 新型医用Ti-24Nb-4Zr-8Sn合金在Hanks溶液中的电化学腐蚀行为研究[J]. 金属学报, 2012, 48(1): 76-84.
[5] 陈雯 杜荣归 胡融刚 时海燕 朱燕峰 林昌健. 模拟混凝土孔隙液中钢筋表面膜组成与腐蚀行为的关联[J]. 金属学报, 2011, 47(6): 735-742.
[6] 万先松 师玉英 马军 李海庆 宫骏 孙超. 电弧离子镀CrN涂层盐雾腐蚀行为[J]. 金属学报, 2010, 46(5): 600-606.
[7] 向红亮 黄伟林 刘东 何福善. N含量对29Cr铸造超级双相不锈钢组织及性能的影响[J]. 金属学报, 2010, 46(3): 304-310.
[8] 周建龙 李晓刚 杜翠薇 李云玲 李涛 潘莹. X80管线钢在NaHCO3溶液中的阳极电化学行为[J]. 金属学报, 2010, 46(2): 251-256.
[9] 邹妍 郑莹莹 王燕华 王佳 . 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46(1): 123-128.
[10] 袁蕾 王华明 . 镍基固溶体增韧Cr13Ni5Si2合金在含Cl-溶液中的腐蚀行为[J]. 金属学报, 2009, 45(11): 1384-1389.
[11] 张可敏; 杨大智; 邹建新; 董闯 . 316L不锈钢强流脉冲电子束表面改性研究 Part II 在模拟体液中的腐蚀行为[J]. 金属学报, 2007, 42(1): 71-76 .
[12] 刘屏;许昌淦. 钛合金中相的电化学行为[J]. 金属学报, 1989, 25(4): 115-119.
[13] 陈晓怡;郭大侠;罗泾源. Fe-Cr-P非晶合金镀层腐蚀特性的研究[J]. 金属学报, 1988, 24(2): 204-206.
[14] 孙中子;王井银. 非晶态Fe_(75)Cr_5P_(13)C_7合金粉末的耐蚀性研究[J]. 金属学报, 1988, 24(1): 138-140.