Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1070-1078    DOI: 10.11900/0412.1961.2016.00019
  论文 本期目录 | 过刊浏览 |
Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*
吴杰,徐磊(),卢正冠,崔玉友,杨锐
中国科学院金属研究所, 沈阳 110016
PREPARATION OF POWDER METALLURGY Ti-22Al-24Nb-0.5Mo ALLOYS ANDELECTRON BEAM WELDING
Jie WU,Lei XU(),Zhengguan LU,Yuyou CUI,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1137 KB)   HTML
摘要: 

采用预合金粉末热等静压工艺制备了Ti-22Al-24Nb-0.5Mo (原子分数, %)粉末合金, 对Ti-22Al-24Nb-0.5Mo粉末合金环坯和板坯进行电子束焊接. 采用OM, SEM, EPMA和X射线三维成像技术对焊接接头的微观组织进行表征, 研究了焊后热处理对焊接接头显微硬度、拉伸性能和持久性能的影响. 结果表明, 热等静压温度显著影响Ti-22Al-24Nb-0.5Mo粉末合金的孔隙分布. 在1030 oC热等静压成型的粉末环坯经980 oC, 2 h, 真空炉冷热处理后表现出较好的可焊性. 焊接接头熔合区、热影响区和母材的化学成分均匀, 虽然显微组织差异明显, 但是显微硬度无明显区别. 拉伸及持久性能测试试样皆断裂于熔合区. 焊接接头熔合区存在大量的显微孔隙是焊接接头发生断裂的失效机制. 焊后热处理可以减少焊缝处的显微孔隙数量, 从而提高焊接接头塑性及高温持久寿命.

关键词 热等静压Ti-22Al-24Nb-0.5Mo粉末合金微观孔隙电子束焊接    
Abstract

Ti2AlNb alloys are considered as a potential structural material for high temperature applications like gas turbine engine components due to their high specific strength and good creep resistance. In this work, pre-alloyed powder of Ti-22Al-24Nb-0.5Mo (atomic fraction, %) was prepared by an electrode induction melting gas atomization process and powder metallurgy (PM) alloys was made through a hot isostatic pressing (HIPing) route. PM Ti-22Al-24Nb-0.5Mo rings and plates were welded by electron beam welding (EBW). The microstructure of the welded joints was investigated by OM, SEM, EPMA and X-ray tomography. The effect of post-weld heat treatments (PWHT) on the microhardness, tensile properties and rupture lifetime at 650 ℃, 360 MPa of the welding joint of PM Ti-22Al-24Nb-0.5Mo plate was also studied. The results show that the HIPing temperature will affect the porosity distribution of PM Ti-22Al-24Nb-0.5Mo alloys. The PM Ti-22Al-24Nb-0.5Mo rings HIPed at 1030 ℃ after 980 ℃, 2 h, vacuum furnace cooling show good weldability. The fusion zone (FZ), heat affected zone (HAZ) and base metal (BM) of welded joints show homogeneous chemical composition. The microstructures of FZ, HAZ and BM are different while the microhardnesses of FZ, HAZ and BM show no obvious differences. Tensile and stress rupture lifetime testing specimens all fracture in the FZ. It is found that there are a certain number of micro-porosity in the FZ of the welded joints. However, the porosity reduces after PWHT, which will improve the high temperature ductility and rupture properties of the PM Ti-22Al-24Nb-0.5Mo welded joints.

Key wordshot isostatic pressing    powder metallurgy Ti-22Al-24Nb-0.5Mo alloy    porosity    electron beam welding
收稿日期: 2016-01-08      出版日期: 2016-07-08

引用本文:

吴杰,徐磊,卢正冠,崔玉友,杨锐. Ti-22Al-24Nb-0.5Mo粉末合金的制备及电子束焊接*[J]. 金属学报, 2016, 52(9): 1070-1078.
Jie WU,Lei XU,Zhengguan LU,Yuyou CUI,Rui YANG. PREPARATION OF POWDER METALLURGY Ti-22Al-24Nb-0.5Mo ALLOYS ANDELECTRON BEAM WELDING. Acta Metall Sin, 2016, 52(9): 1070-1078.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00019      或      http://www.ams.org.cn/CN/Y2016/V52/I9/1070

图1  电子束焊后Ti-22Al-24Nb-0.5Mo粉末合金环坯和板坯
图2  Ti-22Al-24Nb-0.5Mo粉末合金焊接接头拉伸及持久性能试样的形状及尺寸
图3  Ti-22Al-24Nb-0.5Mo预合金粉末颗粒表面形貌的SEM像
图4  Ti-22Al-24Nb-0.5Mo预合金粉末的XRD谱
图5  不同热等静压温度下Ti-22Al-24Nb-0.5Mo粉末合金内部显微孔洞大小及分布[11]
Sample Al Nb Mo O N H Ar Ti
Pre-alloyed powder 10.4 41.3 0.92 0.065 0.0021 0.0006 <0.0005 Bal.
As-HIPed compact 10.3 41.4 0.90 0.065 0.0100 0.0010 <0.0005 Bal.
表1  Ti-22Al-24Nb-0.5Mo预合金粉末及坯料的化学成分
图6  Ti-22Al-24Nb-0.5Mo粉末合金环坯焊缝组织及X射线探伤结果
图7  Ti-22Al-24Nb-0.5Mo粉末合金板坯焊缝显微组织及元素分布
图8  Ti-22Al-24Nb-0.5Mo粉末合金板坯焊缝显微硬度分布
Sample T / oC Rm / MPa δ / % L / h Rm1/Rm2 Fracture location
BM 20 1072 10.0
12.0
25 -
-
-
-
650 743
As-weld 20 978 4.0 0.3 94% Joint
650 680 - 93% Joint
As-weld+HT1 20 710 -
6.0
3 69%
92%
Joint
Joint
650 675
As-weld+HT2 20 948 3.0 3 92% Joint
650 660 12.0 90% Joint
As-weld+HT3 20 941 4.0 5 91% Joint
650 590 6.0 81% Joint
表2  Ti-22Al-24Nb-0.5Mo粉末合金电子束焊接接头的力学性能
[1] Banerjee D, Gogia A K, Nandi T K, Joshi V A.Acta Metall, 1988; 36: 871
[2] Wang Z, Cao L, Liu R C, Liu D, Cui Y Y, Yang R.Acta Metall Sin, 2013; 49: 1487
[2] (王震, 曹磊, 刘仁慈, 刘冬, 崔玉友, 杨锐. 金属学报, 2013, 49: 1487)
[3] Boehlert C J, Majumdar B S, Seetharaman V, Miracle D B.Metall Mater Trans, 1999; 30A: 2305
[4] Zhang S Z.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004
[4] (张尚洲. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[5] Hu D, Wu X, Loretto M H.Intermetallics, 2005; 13: 914
[6] Wang Y.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2011
[6] (王永. 中国科学院金属研究所博士学位论文, 沈阳, 2011)
[7] Yang R.Acta Metall Sin, 2015; 51: 129
[7] (杨锐. 金属学报, 2015; 51: 129)
[8] Wegmann G, Gerling R, Schimansky F P.Acta Mater, 2003; 51: 741
[9] Wu J, Xu L, Lu B, Cui Y Y, Yang R.Chin J Mater Res, 2014; 28: 387
[9] (吴杰, 徐磊, 卢斌, 崔玉友, 杨锐. 材料研究学报, 2014; 28: 387)
[10] Rao K P, Prasad Y V R K, Suresh K.Mater Des, 2011; 32: 4874
[11] Wu J, Xu L, Lu Z G, Lu B, Cui Y Y, Yang R.J Mater Sci Technol, 2015; 31: 1251
[12] Wang G, Xu L, Tian Y X, Zheng Z, Cui Y Y, Yang R.Mater Sci Eng, 2011; A528: 6754
[13] Chen Z Y, Wang Q J, Liu J R, Li Y L, Yang R, Li J W, Liu F J.Acta Metall Sin, 2008; 44: 263
[13] (陈志勇, 王清江, 刘建荣, 李玉兰, 杨锐, 李晋炜, 刘方军. 金属学报, 2008; 44: 263)
[14] Deng Y H, Guan Q, Tao J, Wu B, Wang X C.Acta Metall Sin, 2015; 51: 1111
[14] (邓云华, 关桥, 陶军, 吴冰, 王西昌. 金属学报, 2015; 51: 1111)
[15] Guo R P. Master Thesis, Northeastern University, Shenyang, 2014
[15] (郭瑞鹏. 东北大学硕士学位论文, 沈阳, 2014)
[16] Guo R P, Xu L, Wu J, Yang R, Zong B Y. Mater Sci Eng, 2015; A639: 327
[17] Wang S G, Wang S C, Zhang L.Acta Metall Sin, 2013; 49: 897
[17] (王绍钢, 王苏程, 张磊. 金属学报, 2013; 49: 897)
[18] Xu L, Wu J, Cui Y Y, Yang R.In: Kim Y W, Smarsly W, Lin J P, Dimiduk D, Appel F eds., Gamma Titanium Aluminide Alloys 2014, Warrendale, PA: TMS, 2014: 195
[19] Liu X W, Su Y Q, Luo L S, Li K, Dong F Y, Guo J J, Fu H Z.Int J Hydrogen Energy, 2011; 36: 3260
[20] Li W B, Easterling K E.Powder Metall, 1992; 35: 47
[21] Xu L, Guo R P, Bai C G, Lei J F, Yang R.J Mater Sci Technol, 2014; 30: 1289
[22] Wu J, Xu L, Guo R P, Lu Z G, Cui Y Y, Yang R.Mater Res Innovations, 2015; 19(sup9): 46
[23] Kou S. WeldingMetallurgy.2nd ed . Canada: John Wiley &Sons, 2003: 27
[24] Boehlert C J.Metall Mater Trans, 2001; 32A: 1977
[25] Boehlert C J, Miracle D B.Metall Mater Trans, 1999; 30A: 2349
[1] 卢正冠,吴杰,徐磊,崔潇潇,杨锐. Ti2AlNb异形粉末环件的轧制成形与性能研究[J]. 金属学报, 2019, 55(6): 729-740.
[2] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[3] 郭瑞鹏,徐磊,程文祥,雷家峰,杨锐. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响*[J]. 金属学报, 2016, 52(7): 842-850.
[4] 于冰冰,陈志勇,赵子博,刘建荣,王清江,李晋炜. TC17钛合金电子束焊接接头的显微组织与力学性能研究*[J]. 金属学报, 2016, 52(7): 831-841.
[5] 高恒, 宋元元, 赵明久, 胡小锋, 戎利建. 回火对9Cr2WVTa钢电子束焊接接头组织和力学性能的影响[J]. 金属学报, 2014, 50(12): 1429-1436.
[6] 姚瑶,叶建水,董建新,姚志浩,张麦仓,国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律: I.扩散连接模型的建[J]. 金属学报, 2013, 49(9): 1041-1050.
[7] 姚瑶,董建新,姚志浩,张麦仓, 国为民. DD407/FGH95合金热等静压扩散连接反应层元素互扩展规律:II. 模型验证及实验分析[J]. 金属学报, 2013, 49(9): 1051-1060.
[8] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[9] 马文斌,刘国权,胡本芙,贾成厂. 镍基粉末高温合金FGH96中原始粉末颗粒边界的形成机理[J]. 金属学报, 2013, 49(10): 1248-1254.
[10] 吕铮,卢晨阳,张守辉,谢锐,刘春明. 纳米结构14Cr-ODS铁素体钢的制备与微观结构[J]. 金属学报, 2012, 48(6): 649-653.
[11] 盛立远 郭建亭 章炜 谢亿 周兰章 叶恒强. 热等静压和热处理对快凝NiAl--Cr(Mo)--Hf共晶合金显微组织和压缩性能的影响[J]. 金属学报, 2009, 45(9): 1025-1029.
[12] 陈志勇; 王清江; 刘建荣; 李玉兰; 杨锐; 李晋炜; 刘方军 . Ti-60高温钛合金电子束焊接接头高温下的损伤失效行为研究[J]. 金属学报, 2008, 44(3): 263-271 .
[13] 张宇鹏; 张新平; 钟志源 . 梯度孔隙率大孔隙尺寸NiTi形状记忆合金制备及其相变和超弹性行为[J]. 金属学报, 2007, 43(11): 1221-1227 .
[14] 呼和 . 镍基铸造高温合金的热等静压处理[J]. 金属学报, 2002, 38(11): 1199-1202 .
[15] 刘敏; 康继东; 李瑜; 陈士煊 . Ti合金电子束焊接三维温度场计算[J]. 金属学报, 2001, 37(3): 301-306 .