Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1089-1095    DOI: 10.11900/0412.1961.2015.00655
  论文 本期目录 | 过刊浏览 |
激光选区熔化成形K4202镍基铸造高温合金的组织和性能*
黄文普,喻寒琛,殷杰,王泽敏(),曾晓雁
华中科技大学武汉光电国家实验室, 武汉 430074
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF K4202 CAST NICKEL BASE SUPERALLOY FABRICATED BY SELECTIVE LASER MELTING
Wenpu HUANG,Hanchen YU,Jie YIN,Zemin WANG(),Xiaoyan ZENG
Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(1355 KB)   HTML
  
摘要: 

针对激光选区熔化(selective laser melting, SLM)制造K4202合金复杂金属零件在航空航天等领域的应用需求, 以K4202合金粉末为材料, 研究了该合金的SLM成形工艺、成形态和热处理后的显微组织和力学性能. 结果表明, K4202合金SLM成形试样显微组织由树枝晶和等轴晶构成, 树枝晶生长方向多与熔池边界近似垂直. 固溶+时效处理后, 由于再结晶的发生, SLM成形所形成的树枝晶结构完全消失, 同时晶界和晶内有金属碳化物析出. 时效处理后的组织与SLM成形态相比, 变化并不明显, 其树枝晶结构保存较完整, 晶界处同样有碳化物析出. SLM成形试样的拉伸性能优于传统铸造方法, 通过固溶+时效处理和时效处理, 试样的屈服强度、抗拉强度均提升显著, 但塑性下降明显, 其中时效处理后的拉伸强度最高.

关键词 K4202合金激光选区熔化成形工艺显微组织力学性能    
Abstract

As a cast nickel base superalloy, K4202 is mainly used in aircraft engines due to its high strengths at elevated temperatures, excellent resistance to hot corrosion and favorable weldability. K4202 alloy is usually fabricated by the conventional casting method and mechanical processing, along with macro-segregation and excessive tool wear. As one of the most promising additive manufacturing technologies, selective laser melting (SLM) is able to manufacture high-performance and complex components. According to the requirement of selective laser melting manufactured metal parts with complex structures in aerospace and other fields, K4202 alloy was used as material for SLM in this research and the forming technology, microstructure and mechanical properties of SLMed and heat-treated samples were studied. The results show that the microstructure of samples formed by SLM is composed of dendrites and isometric crystal. The growing direction of dendrites is nearly perpendicular to melt pool traces in most cases. The dendrite structures disappear completely after solution+ageing heat treatment on account of recrystallization and metal carbide precipitates in grains and at grain boundaries. The precipitates are able to improve the strength of the grain boundary due to the pinning effect. The microstructure has no significant changes after ageing heat treatment, but carbide precipitates at grain boundaries as well. The microhardness of SLM samples is uniform on cross section and vertical section. After solution+ageing and ageing heat treatment, there is a significant improvement on the microhardness. The mechanical properties for as-fabricated samples are superior to those of the cast K4202. Besides, the yield strength and tensile strength increase clearly after heat treatments and the mechanical properties is the highest after ageing heat treatment. This is because of the precipitation of γ' strengthening phases. However, the obvious decrease in the ductility occurs at the same time.

Key wordsK4202 alloy    selective laser melting    forming technology    microstructure    mechanical property
收稿日期: 2015-12-22      出版日期: 2016-07-12
基金资助:* 国家高技术研究发展计划资助项目2013AA031606

引用本文:

黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.
Wenpu HUANG,Hanchen YU,Jie YIN,Zemin WANG,Xiaoyan ZENG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF K4202 CAST NICKEL BASE SUPERALLOY FABRICATED BY SELECTIVE LASER MELTING. Acta Metall Sin, 2016, 52(9): 1089-1095.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00655      或      http://www.ams.org.cn/CN/Y2016/V52/I9/1089

图1  拉伸试样示意图
图2  K4202合金粉末形貌的SEM像
图3  K4202合金激光选区熔化(SLM)成形态纵截面和横截面显微组织的OM和SEM像
图4  HT1试样纵截面显微组织的OM和SEM像及EDS分析结果
图5  HT2试样纵截面显微组织的OM和SEM像
图6  不同处理条件下K4202合金试样的XRD谱
图7  不同处理条件下K4202合金试样的显微硬度
图8  不同状态下K4202合金试样的拉伸曲线
表1  不同状态下K4202合金的拉伸性能
[1] Wang J M, Shao C, Zhao M H, Cai Q K.Mod Manuf Eng, 2007; (9): 91
[1] (王建明, 邵冲, 赵明汉, 才庆魁. 现代制造工程, 2007; (9): 91)
[2] Costes J P, Guillet Y, Poulachon G, Dessoly M.Int J Mach Tools Manuf, 2007; 47: 1081
[3] Qi H, Azer M, Ritter A.Metall Mater Trans, 2009; 40A: 2410
[4] Zhang D Y, Niu W, Cao X Y, Liu Z. Mater Sci Eng, 2015; A644: 32
[5] Zhang B J, Zhao G P, Zhang W Y, Huang S, Chen S F.Acta Metall Sin, 2015; 51: 1227
[5] (张北江, 赵光普, 张文云, 黄烁, 陈石富. 金属学报, 2015; 51: 1227)
[6] Tian Z J, Gu D D, Shen L D, Xie D Q, Wang D S.Aeron Manuf Technol, 2015; (11): 38
[6] (田宗军, 顾冬冬, 沈理达, 谢德巧, 王东生. 航空制造技术, 2015; (11): 38)
[7] Chen J L, Dong P, Zhang K, He J W, Liang X K.Electromach Mould, 2014; (1): 66
[7] (陈济轮, 董鹏, 张昆, 何京文, 梁晓康. 电加工与模具, 2014; (1): 66)
[8] Cui C X, Hu B M, Zhao L C.Mater Des, 2011; 32: 1684
[9] Yadroitsev I, Smurov I.Phys Procedia, 2010; 5: 551
[10] Vilaro T.Mater Sci Eng, 2012; A534: 446
[11] Kanagarajah P, Brenne F, Niendorf T.Mater Sci Eng, 2013; A588: 188
[12] Wei K W, Wang Z M, Zeng X Y.Mater Lett, 2015; 156: 187
[13] Zhang H, Zhu H H, Qi T, Hu Z H, Zeng X Y.Mater Sci Eng, 2016; A656: 47
[14] Pauly S, L?ber L, Romy P.Mater Today, 2013; 16: 37
[15] Chlebus E, Gruber K, Ku?nicka B, Kurzac J, Kurzynowski T.Mater Sci Eng, 2015; A638: 647
[16] Shi Y S, Lu Z L, Zhang W X, Huang S H, Chen G Q.Chin Surf Eng, 2006; 19(5+): 150
[16] (史玉升, 鲁中良, 章文献, 黄树槐, 陈国清. 中国表面工程, 2006; 19(5+): 150)
[17] Song B, Dong S J, Coddet P, Liao H L, Coddet C.Mater Des, 2014; 53: 1
[18] Wang Z M, Guan K, Gao M, Li X Y, Chen X F, Zeng X Y.J Alloys Compd, 2012; 513: 518
[19] Mumtaz K A, Hopkinson N.J Mater Process Technol, 2010; 210: 279
[20] Li S, Wei Q S, Shi Y S, Zhu Z C, Zhang D Q.J Mater Sci Technol, 2015; 31: 946
[21] Harrison N J, Todd I, Mumtaz K. Acta Mater, 2015; 94: 59
[22] Bi G J, Sun C N, Chen H C, Ng F L, Ma C C K.Mater Des, 2014; 60: 401
[23] Kunze K, Etter T, Gr?sslin J, Shklover V.Mater Sci Eng, 2015; A620: 213
[24] Rickenbacher L, Etter T, Hovel S.Rapid Prototyping J, 2013; 19: 282
[25] Huang Q Y, Li H K.Superalloy. Beijing: Metallurgical Industry Press, 2000: 6
[25] (黄乾尧, 李汉康. 高温合金. 北京:冶金工业出版社, 2000: 6)
[26] Liu Q C, Elambasseril J, Sun S J, Leary M, Brandt M, Sharp P K. Adv Mater Res, 2014; 891: 1519
[27] Loh L E, Liu Z H, Zhang D Q, Mapar M, Sing S L, Chua C K, Yeong W Y.Virtual Phy Prototyping, 2014; 9: 11
[28] He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T.Mater Sci Eng, 2005; A397: 297
[29] Guo J T.Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 322
[29] (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 322)
[30] Vilaro T, Colin C, Bartout J D, Nazé L, Sennour M.Mater Sci Eng, 2012; A534: 446
[31] Song K, Yu K, Lin X, Chen J, Yang H O, Huang W D.Acta Metall Sin, 2015; 51: 935
[31] (宋衎, 喻凯, 林鑫, 陈静, 杨海欧, 黄卫东. 金属学报, 2015; 51: 935)
[32] Shao C, Li J T, Wu J T, Zhao M H.In: Zhang W ed., Proc 11th China Superalloys Conference, Beijing: Metallurgical Industry Press, 2007: 364
[32] (邵冲, 李俊涛, 吴剑涛, 赵明汉. 见: 张卫主编, 第十一届中国高温合金年会论文集, 北京: 冶金工业出版社, 2007: 364)
[1] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[2] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[3] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[4] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[5] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[6] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[7] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[8] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[9] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[10] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[11] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[12] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2): 171-180.
[13] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[14] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[15] 贺志荣, 吴佩泽, 刘康凯, 冯辉, 杜雨青, 冀荣耀. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为[J]. 金属学报, 2018, 54(8): 1157-1164.