Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1133-1141    DOI: 10.11900/0412.1961.2015.00641
  论文 本期目录 | 过刊浏览 |
酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*
闫茂成(),杨霜,许进,孙成,吴堂清,于长坤,柯伟
中国科学院金属研究所国家金属腐蚀控制工程技术研究中心, 沈阳 110016
STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL
Maocheng YAN(),Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE
Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1212 KB)   HTML
  
摘要: 

设计加载阵列电极应力腐蚀实验装置, 针对我国典型的华南酸性红壤环境, 研究高强度低合金(HSLA) X80管线钢在破损防腐层(涂层)模拟缝隙下的应力腐蚀开裂(SCC)行为及影响因素, 采用电化学阻抗谱(EIS)监测加载电极的腐蚀电化学过程, 利用微电极监测防腐层剥离区局部电位和pH值变化, 探讨破损涂层下HSLA管线钢SCC行为和规律. 结果表明, 防腐层开放破损(漏点)处管线钢发生严重腐蚀: 不受力试样表面以阳极溶解占主导的均匀腐蚀为主, 而拉伸试样表面出现大量微裂纹和点蚀坑, 且沿试样划痕优先生长; 封闭的剥离区内部管线钢的腐蚀程度显著减缓. 同时, 对涂层破损点及剥离区深处管线钢的腐蚀现象和过程进行了讨论.

关键词 土壤腐蚀管线钢3PE涂层剥离应力腐蚀开裂(SCC)阴极保护    
Abstract

The three-layer polyethylene (3PE or 3LPE) coatings have been widely used on long-distance high pressure transmission pipelines in China. The 3PE coating tends to remain high insulating after disbonding from pipelines, and block the function of cathoidc protection (CP), similar to PE tape coatings that caused stress corrosion cracking (SCC) failure of pipeline. Disbondment 3PE coatings have been reported worldwide. Because of the high integrity and dielectric strength of 3PE coatings, SCC under disbonded 3PE coating becomes an important issue for integrity management and operation of high pressure pipelines. A great deal of researches have been conducting over the past 20 years to reproduce SCC of high strength low alloy (HSLA) pipeline in laboratory. Most of these studies were conducted in bulk solution condition. The methodology neglects particularity of the thin-layer electrolyte under disbonded coating which has been identified as one of the primary environmental factors related to SCC. In this context, a research project has been initiated on this subject. The overall goal is to systematically investigate corrosion scenarios and mechanochemical interaction of HSLA pipeline steels under disbonded 3PE coating in different soil environments, particularly to further mechanistic understanding the initiation of SCC on pipelines under disbonded coating. In this work, SCC behavior of API X80 pipeline steel under disbonded coating with defect was investigated in acidic soil solution by a crevice cell specially designed for simulating coating disbondment. The crevice cell was equipped with a multi-sample loading frame, through which multi specimens in the crevice cell can be loaded simultaneously. Electrochemical impedance spectroscopy (EIS) was applied to characterize local electrochemical process of the tensile specimens. Local environment parameters (potential and pH) were monitored by microelectrodes. Surface morphology of the corrosion specimens indicate that corrosion intensity of X80 steel decreased over the distance from the opening. Intensive anodic dissolution and microcrack initiation were preferential at the opening defect, whereas corrosion was markedly mitigated under disbonded coating. CO2 content gradient is proposed for the special corrosion scenarios under coating disbondment.

Key wordssoil corrosion    pipeline steel    disbonded 3PE coating    stress corrosion cracking (SCC)    cathodic protection
收稿日期: 2015-12-15      出版日期: 2016-06-12
基金资助:* 国家自然科学基金重点项目51131001和国家科技基础条件平台-国家材料环境腐蚀平台项目2005DKA10400资助

引用本文:

闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL. Acta Metall Sin, 2016, 52(9): 1133-1141.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00641      或      http://www.ams.org.cn/CN/Y2016/V52/I9/1133

图1  破损防腐层下高强度管线钢应力腐蚀实验装置图
图2  受力X80管线钢试样尺寸
图3  鹰潭酸性红壤溶液中破损防腐层下不同位置X80钢局部电位分布
图4  防腐层漏点处及距漏点50和250 mm处受力及不受力X80钢试样表面腐蚀形貌的SEM像
图5  防腐层漏点处受力X80试样(100%σ0.2)表面腐蚀形貌的SEM像
图6  防腐层漏点处受力及不受力X80管线钢试样浸泡不同时间的EIS
图7  用于EIS拟合分析的等效电路模型
图8  受力和不受力X80钢试样的电荷转移电阻Rct随时间的变化
图9  X80钢在5%CO2+95%N2气体饱和红壤溶液中浸泡不同时间的极化曲线
图10  破损防腐层下CO2浓度和管线钢腐蚀速率随剥离区距离的变化趋势示意图
[1] Shen G J, Chen H Y, Xue Z Y, Zhao J.Corros Sci Prot Technol, 2013; 25: 246
[1] (沈光霁, 陈洪源, 薛致远, 赵君. 腐蚀科学与防护技术, 2013; 25: 246)
[2] Tang Y P, Yan R J, Huang Z Y, Li J X, Wang L.Mater Prot, 2011; 44: 45
[2] (唐谊平, 晏荣军, 黄子阳, 李建新, 王琍. 材料保护, 2011; 44: 45)
[3] Xue Z Y, Bi W X, Chen Z H, Zhang F, Chen H Y.Oil Gas Storage Transp, 2014; 33: 938
[3] (薛致远, 毕武喜, 陈振华, 张丰, 陈洪源. 油气储运, 2014; 33: 938)
[4] Argent C, Norman .D Corrosion2005, Houston, TX: NACE, 2005:Paper 05034 (CD)
[5] Yan M C, Wang J Q, Ke W, Han E-H.J Chin Soc Corros Prot, 2007; 27: 257
[5] (闫茂成, 王俭秋, 柯伟, 韩恩厚. 中国腐蚀与防护学报, 2007; 27: 257)
[6] Yan M C, Wang J Q, Han E-H, Ke W.Corros Sci, 2008; 50: 1331
[7] Chen X, Li X G, Du C W, Cheng Y F.Corros Sci, 2009; 51: 2242
[8] Chang B T, Jiang H, Sue H J, Wong D, Kehr A, Mallozzi M.Proc 17th Int Conf on Pipeline Protection, Edinburgh, UK (CD)
[9] Nazarbeygi A E, Moeini A R.Mater Perform, 2009; 48: 32
[10] Lagos F F, Maga?a C S, Lopez M A, Padilla J, Canto J, Villamizar W, Martinez-de la-Escalera L M, Ascencio J A, Martínez L. Corrosion2010, Houston, TX: NACE, 2010:Paper 10003 (CD)
[11] Song F M, Kirk D W, Graydon J W, Cormack D E, Wong D. Mater Perform, 2003; 42: 24
[12] Parkins R N. Corrosion2000, Houston, TX: NACE, 2005:Paper 363 (CD)
[13] National Energy Board.Report of Public Inquiry Concerning Stress Corrosion Cracking on Canadian Oil and Gas Pipelines. MH-2-95, 1996
[14] Yan M C, Wang J Q, Han E-H, Ke W.Corros Eng Sci Technol, 2007; 42: 42
[15] Charles E A, Parkins R N.Corrosion, 1995; 51: 518
[16] Yan M, Sun C, Xu J, Wu T Q, Yang S, Ke W. Corros Sci, 2015; 93: 27
[17] Eslami A, Fang B, Kania R, Worthingham B, Been J, Eadie R, Chen W.Corros Sci, 2010; 52: 3750
[18] Liu Z Y, Li X G, Du C W, Zhai G L, Cheng Y F.Corros Sci, 2008; 50: 2251
[19] Yan M C, Sun C, Xu J, Dong J H, Ke W.Corros Sci, 2014; 80: 309
[20] Zhao B, Du C W, Liu Z Y, Li X G, Yang J K, Li Y Q.Acta Metall Sin, 2012; 48: 1530
[20] (赵博, 杜翠薇, 刘智勇, 李晓刚, 杨吉可, 李月强. 金属学报, 2012; 48: 1530)
[21] Yan M C, Sun C, Dong J H, Xu J, Ke W.Corros Sci, 2015; 97: 62
[22] Paolinelli L D, Perez T, Simison S N.Corros Sci, 2008; 50: 2456
[23] Fang B Y, Eadie R L, Chen W X, Elboujdaini M.Corros Eng Sci Technol, 2010; 45: 302
[24] Chechirlian S, Eichner P, Keddam M, Takenouti H, Mazille H.Electrochim Acta, 1990; 35: 1125
[25] Rosborg B, Kosec T, Kranjc A, Pan J, Legat A.Electrochim Acta, 2011; 56: 7862
[26] Sridhar N, Dunn D S, Seth M.Corrosion, 2001; 57: 598
[27] Egbewande A, Chen W, Eadie R, Kania R, Van Boven G, Worthingham R, Been J.Corros Sci, 2014; 83: 343
[28] Egbewande A, Chen W, Eadie R, Kania R, Van Boven G, Worthingham R, Been J.Metall Mater Trans, 2014; 45A: 4946
[29] Fu A Q, Cheng Y F.Corros Sci, 2010; 52: 2511
[30] Yan M C, Weng Y J.J Chin Soc Corros Prot, 2005; 25: 34
[30] (闫茂成, 翁永基. 中国腐蚀与防护学报, 2005; 25: 34)
[31] Eslami A, Kania R, Worthingham B, Boven G V, Eadie R, Chen W.Corrosion, 2013; 69: 1103
[32] Chen W, Kania R, Worthingham R, Boven G V.Acta Mater, 2009; 57: 6200
[33] Wang Z Y, Wang J Q, Han E-H, Ke W, Yan M C, Zhang J W, Liu C W.Acta Metall Sin, 2012; 48: 1267
[33] (王志英, 王俭秋, 韩恩厚, 柯伟, 闫茂成, 张峻巍, 刘楚威. 金属学报, 2012; 48: 1267)
[1] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[2] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[3] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[4] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[5] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[6] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[7] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[8] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[9] 赵小宇, 黄峰, 甘丽君, 胡骞, 刘静. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
[10] 于利宝, 闫茂成, 马健, 吴明浩, 舒韵, 孙成, 许进, 于长坤, 卿永长. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为[J]. 金属学报, 2017, 53(12): 1568-1578.
[11] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[12] 毕宗岳,杨军,刘海璋,张万鹏,杨耀彬,田磊,黄晓江. TA1/X65复合板焊接工艺及焊缝组织和性能研究*[J]. 金属学报, 2016, 52(8): 1017-1024.
[13] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[14] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[15] 徐云泽, 黄一, 盈亮, 杨飞, 李兵, 王晓娜. 管线钢在沉积物下的腐蚀行为及有机膦缓蚀剂的作用效果*[J]. 金属学报, 2016, 52(3): 320-330.