Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 875-882    DOI: 10.11900/0412.1961.2015.00622
  论文 本期目录 | 过刊浏览 |
DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*
孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄()
中国科学院金属研究所, 沈阳 110016
MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY
Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1174 KB)   HTML  
  
摘要: 

采用新型Ni-Co-Cr-W-B+DD99混合粉末钎料焊接DD5单晶高温合金, 分析钎料成分对接头显微组织演变和接头力学性能的影响, 探讨Ni-Co-Cr-W-B钎料/DD99合金粉的界面形成机制与接头形成机理. 结果表明, 在钎焊过程中, Ni-Co-Cr-W-B钎料/DD99合金粉的界面上首先形成了γ-Ni初生相, B偏析并析出细小颗粒状的M3B2 型硼化物, 在冷却过程中残余液相形成块状M3B2相、γ+γ′共晶相和γ-Ni+Ni3B+CrB共晶相. 提高混合粉末钎料中DD99合金粉的配比, 可有效抑制焊缝中的硼化物和低熔点共晶相的形成, 提高焊缝成分和组织均匀性. 当DD99合金粉的配比增加至70% (质量分数)时, B可均匀扩散至DD5母材和DD99合金粉中, 未观察到低熔点共晶相, 界面处脆性化合物相显著减少, 接头高温性能提高. 接头经过固溶处理和时效处理后, 在870 ℃的高温拉伸性能可提高至1010 MPa.

关键词 单晶高温合金大间隙钎焊混合粉末钎料微观组织力学性能    
Abstract

Ni-based single-crystal superalloy DD5 has excellent high temperature properties, which is the preferred raw material for aero-engine turbine blade in recent year. In this research, DD5 superalloy was brazed by different contents of Ni-Co-Cr-W-B+DD99 mixed powder filler alloy. The microstructure evolution and interfacial formation mechanism of DD5 superalloy brazing joint were analyzed by SEM and EPMA. The mechanical properties of joint after solid solution treatment and aging treatment were tested. The results show that γ-Ni primary phase formed firstly in the Ni-Co-Cr-W-B/DD99 interface during the brazing process, and then B element segregated and precipitated to fine granular M3B2 type boride. The residual liquid phase solidified and formed lastly to the M3B2 phase, γ+γ′ eutectic phase and γ-Ni+Ni3B+CrB eutectic phase during cooling. With increasing the ratio of DD99 in mixed powder filler alloy, the low melting point eutectic phase and borides in the joint decrease and the uniformity of composition and microstructure of joint improve. When the ratio of DD99 increased to 70% (mass fraction) in the mixed powder filler alloy, it can be observed that element of B diffused to DD99 additive powder which result ed in the decrease of low melting point eutectic phases and brittle compounds. The high temperature tensile properties of joint is 1010 MPa at 870 ℃.

Key wordssingle crystal superalloy    wide gap brazing    mixed powder filler alloy    microstructure    mechanical property
收稿日期: 2015-12-03      出版日期: 2016-04-29
基金资助:*国家自然科学基金项目51401210和51331005以及国家高技术研究发展计划项目2014AA041701资助

引用本文:

孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*[J]. 金属学报, 2016, 52(7): 875-882.
Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU. MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY. Acta Metall, 2016, 52(7): 875-882.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00622      或      http://www.ams.org.cn/CN/Y2016/V52/I7/875

Alloy Ratio of mixed powder filler alloy
mass fraction / %
Solid-liquid transition temperature / ℃ Liquidus temperature
JSNi-1 100%Ni-Co-Cr-W-B 1050 1140
JSNi-2 50%Ni-Co-Cr-W-B+50%DD99 1050 1200
JSNi-3 30%Ni-Co-Cr-W-B+70%DD99 1050 1332
JSNi-4 20%Ni-Co-Cr-W-B+80%DD99 1050 1340
表1  混合粉末钎料的成分配比、固液转变温度和液相线温度
图1  JSNi-1钎料钎焊DD5单晶合金接头的SEM像
图2  JSNi-1钎料钎焊DD5单晶合金接头热处理后的SEM像
图3  采用不同配比的钎料合金在1260 ℃, 30 min钎焊DD5单晶合金的接头SEM像
图4  采用不同配比的钎料合金钎焊DD5单晶合金接头热处理后显微组织的SEM像
图5  钎料成分对接头抗拉强度的影响
图6  采用混合粉末钎料焊接DD5单晶高温合金的接头形成机理示意图
[1] Zhang X L, Zhou Y Z, Jin T, Sun X F.Acta Metall Sin, 2012; 48: 1229
[1] (张晓丽, 周亦胄, 金涛, 孙晓峰. 金属学报, 2012; 48: 1229)
[2] Tung S K, Lim L C, Lai M O.Scr Mater, 1996; 34: 763
[3] Huang X, Miglietti W.J Eng Gas Turb Power, 2012; 134: 010801
[4] Chen Y, Zhang K, Huang J, Hosseini S R E, Li Z G.Mater Des, 2016; 90: 586
[5] Zhang D X, Liu D S, Zhu X P.In: Sung W P, Chen R eds., 3rd Int Conf Frontiers of Manufacturing and Design Science, Hong Kong: Trans Tech Publications LTD, 2013: 64
[6] Liu T, Yan F, Liu S, Li R Y, Wang C M, Hu X Y.Opt Laser Technol, 2016; 80(2): 56
[7] Chelladurai A M, Gopal K A, Murugan S, Albert S K, Venugopal S, Jayakumar T.Sci Technol Weld Joining, 2015; 20: 578
[8] Ma T J, Yan M, Yang X W, Li W Y, Chao Y J.Mater Des, 2015; 85: 613
[9] Du S G, Wang X F, Gao M.Acta Metall Sin, 2015; 51: 951
[9] (杜随更, 王喜锋, 高漫. 金属学报, 2015; 51: 951)
[10] Cook G O, Sorensen C D.J Mater Sci, 2011; 46: 5305
[11] Philips N R, Levi C G, Evans A G.Metall Mater Trans, 2008; 39A: 142
[12] Pill J J, Kang C S.Mater Trans JIM, 1997; 38: 886
[13] Li W, Jin T, Sun X F, Guo Y, Guan H R, Hu Z Q.Scr Mater, 2003; 48: 1283
[14] Khakian M, Nategh S, Mirdamadi S.J Alloys Compd, 2015; 653: 386
[15] Liu A N, Zhai Q Y, Kang W J, Xu J F, Zhang J, Ruan C Y, Wang W.Hot Work Technol, 2014; 43(17): 29
[15] (刘安娜, 翟秋亚, 康文军, 徐锦锋, 张军, 阮成勇, 王炜. 热加工工艺, 2014; 43(17): 29)
[16] Huang X, Au P.J Eng Gas Turb Power, 2008; 130: 032101
[17] Henhoeffer T, Huang X, Yand S, Au P, Nagy D.Mater Sci Technol Lond, 2010; 26: 431
[18] Henhoeffer T, Huang X, Au P.J Eng Gas Turb Power, 2011; 133: 092101
[19] Guo J T.Material Science and Engineering for Superalloys (II). Beijing: Science Press, 2008: 452
[19] (郭建亭. 高温合金材料学(中). 北京: 科学出版社, 2008: 452)
[20] Zhuang H S, Lugscheider E. High Temperature Brazing.Beijing: National Defence Industry Press, 1989: 46
[20] (庄鸿寿, Lugscheider E.高温钎焊. 北京: 国防工业出版社, 1989: 46)
[21] Li X H, Zhong Q P, Cao C X.J Aeron Mater, 2003; 23(12): 10
[21] (李晓红, 钟群鹏, 曹春晓. 航空材料学报, 2003; 23(12): 10)
[22] Li X H, Xiong H P, Zhang X J.Joining Technologies of Advanced Aeronautical Materials. Beijing: National Defense Industry Press, 2012: 28
[22] (李晓红, 熊华平, 张学军. 先进航空材料焊接技术. 北京: 国防工业出版社, 2012: 28)
[23] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Philos Mag, 2014; 94: 1219
[24] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.J Mater Sci Technol, 2015; 31: 129
[25] Sheng N C, Liu J D, Jin T, Sun X F, Hu Z Q.Metall Mater Trans, 2013; 44A: 1793
[26] Liu J D.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007
[26] (刘纪德. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[27] Sun Y, Liu J D, Liu Z M, Yang J X, Li J G, Jin T, Sun X F.Acta Metall Sin, 2013; 49: 1581
[27] (孙元, 刘纪德, 刘忠明, 杨金侠, 李金国, 金涛, 孙晓峰. 金属学报, 2013; 49: 1581)
[1] 宁礼奎,佟健,刘恩泽,谭政,纪慧思,郑志. Ru对一种高Cr镍基单晶高温合金凝固组织的影响[J]. 金属学报, 2017, 53(4): 423-432.
[2] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[3] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[4] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[5] 康举,梁苏莹,吴爱萍,李权,王国庆. 2219铝合金搅拌摩擦焊中的局部液化现象及对接头力学性能的影响[J]. 金属学报, 2017, 53(3): 358-368.
[6] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[7] 李宁,张蓉,张利民,邢辉,殷鹏飞,吴耀燕. 低压交流电脉冲下Al-7%Si合金晶粒细化机理研究[J]. 金属学报, 2017, 53(2): 192-200.
[8] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[9] 王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.
[10] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[11] 黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.
[12] 王刚,徐磊,崔玉友,杨锐. TiAl预合金粉末热等静压致密化机理及热处理对微观组织的影响*[J]. 金属学报, 2016, 52(9): 1079-1088.
[13] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[14] 史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
[15] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.