Please wait a minute...
金属学报  2016, Vol. 52 Issue (7): 787-796    DOI: 10.11900/0412.1961.2015.00617
  论文 本期目录 | 过刊浏览 |
Q460钢焊接接头组织及动态断裂行为的研究*
冯祥利1,2,王磊1(),刘杨1
1 东北大学材料科学与工程学院材料各向异性与织构教育部重点实验室, 沈阳 110819。
2 中冶置业集团有限公司, 北京 100088。
STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS
Xiangli FENG1,2,Lei WANG1(),Yang LIU1
1 Key Lab for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 China Metallurgical Group Corporation, Beijing 100088, China
全文: PDF(1613 KB)   HTML  
摘要: 

通过调整焊接热输入研究了Q460低合金高强钢CO2气体保护药芯焊接接头的组织及其对不同温度下动态断裂韧性(JId)的影响规律, 探究了影响接头动态断裂行为的机理. 结果表明, 低热焊接输入的接头熔合区(FZ)柱状晶界面处存在仿晶界型铁素体; 随热输入增加, FZ柱状晶形态特征逐渐减弱、仿晶界铁素体消失, FZ以针状铁素体组织为主, 且随热输入的增加针状铁素体平均尺寸增大. 在室温至-70 ℃范围内, 中等热输入的焊接接头均表现出优异的动态断裂韧性, 而低热输入的接头动态断裂韧性值最低. 随温度由室温降低至-70 ℃, Q460钢焊接接头动态断裂机制发生了由延性断裂逐渐向解理脆性断裂的转变. 低热输入焊接接头FZ柱状晶界面具有平面生长特征的仿晶界铁素体, 易诱发低温下裂纹沿晶快速扩展. 研究发现, 在低温动态断裂过程中, 细小针状铁素体组织由于可有效地阻碍裂纹扩展, 成为其维持高动态断裂韧性的要因.

关键词 低合金高强钢动态断裂韧性冲击吸收功断裂行为显微组织    
Abstract

Effects of welding heat input on the microstructure and dynamic fracture toughness (JId) of the CO2 shielded arc welded joints of Q460 high strength low alloy steel were investigated. The mechanism of effects on the dynamic facture behavior of the welded joint was also discussed. The results showed that there existed the allotriomorphic ferrite at the columnar interface in the fusion zone of welded joint under the condition of low heat input. The morphological characteristics of columnar crystal in the fusion zone gradually decreased and the allotriomorphic ferrite disappeared as the heat input increased. The fusion zone was mainly composed of acicular ferrite, and its average size increased with increasing heat input. The welded joint exhibited the optimal dynamic fracture toughness under the condition of medium heat input while it showed the lowest value under low heat input within the temperature range of -70 ℃ to room temperature. When the temperature decreased from room temperature to -70 ℃, the dynamic fracture mechanism of Q460 welded joint changed from ductile fracture to brittle cleavage fracture. Under the condition of low heat input, the allotriomorphic ferrite characterized by the planar growth at the columnar interface in the fusion zone of welded joint can lead to the rapid intergranular crack propagation at low temperature. The fine acicular ferrite in the fusion zone of the welding joint obtained at medium heat input which can hinder the crack propagation during the dynamic fracture at low temperature to the greatest extent is the reason why the welded joint exhibits high dynamic fracture toughness.

Key wordslow alloy high strength steel    dynamic fracture toughness    impact absorted energy    fracture behavior    mirostructure
收稿日期: 2015-12-01      出版日期: 2016-03-25
基金资助:* 国家自然科学基金项目51371044和51571052以及中央高校基本科研业务费专项资金项目L1502027资助

引用本文:

冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS. Acta Metall, 2016, 52(7): 787-796.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00617      或      http://www.ams.org.cn/CN/Y2016/V52/I7/787

图1  Q460钢CO2气体保护药芯焊接头动态断裂样品取样位置及尺寸示意图
图2  Q460钢母材(BM)原始组织
图3  不同平均热输入下Q460钢CO2气体保护药芯焊接头的组织
图4  不同平均热输入下Q460钢CO2气体保护药芯焊接头的硬度分布
图5  不同热输入下Q460钢CO2气体保护药芯焊接头的冲击吸收功及动态断裂韧性
图6  Q460钢CO2气体保护药芯焊接头的动态断裂韧性断口宏观形貌
图7  Q460钢CO2气体保护药芯焊接头的动态断裂韧性断口SEM像
图8  低热输入焊接接头在-50 ℃下的动态断裂韧性断口起裂点附近SEM像
图9  中、高热输入下的接头动态断裂韧性断口起裂点附近的SEM像
[1] Wang S T, Yang S W, Gao K W, Shen X A, He X L.Acta Metall Sin, 2008; 44: 1116
[1] (王树涛, 杨善武, 高克玮, 沈晓安, 贺信莱. 金属学报, 2008; 44: 1116)
[2] Li T J, Li G Q, Wang Y B. J Const Steel Res, 2015; 115: 283
[3] Xiao G C, Jing H Y, Xu L Y, Zhao L, Ji J C.Mater Sci Eng, 2011; A528: 3044
[4] Jiang M, Wang X H, Hu Z Y, Wang K P, Yang C W, Li S R.Mater Charact, 2015; 108: 58
[5] Wang W Y, Liu T Z, Liu J P.J Const Steel Res, 2015; 114: 100
[6] Shi G, Zhou W J, Bai Y, Lin C C.J Const Steel Res, 2014; 100: 60
[7] Mitra A, Prasad N S, Janaki Ram G D.J Mater Process Technol, 2016; 229: 181
[8] Polezhayeva H, Toumpis I A, Galloway M A, Molter L, Ahmad B, Fitzpatrick E M.Int J Fatigue, 2015; 81: 162
[9] Wang Y B, Li G Q, Chen S W.J Const Steel Res, 2012; 76: 93
[10] Berg J, Strangh?ner N.Int J Fatigue, 2016; 82: 35
[11] Nie W J, Shang C J, You Y, Zhang X B, Sundaresa S.Acta Metall Sin, 2012; 48: 797
[11] (聂文金, 尚成嘉, 由洋, 张晓兵, Sundaresa S. 金属学报, 2012; 48: 797)
[12] Saha D C, Chang I S, Park Y D.Mater Charact, 2014; 93: 40
[13] Zhang J Q, Zhang G D, He J, Zhang Y L, Zhang F J.Acta Metall Sin, 2007; 43: 1275
[13] (张建强, 张国栋, 何洁, 章应霖, 张富巨. 金属学报, 2007; 43: 1275)
[14] Ma R, Fang K, Yang J G, Liu X S, Fang H Y.J Mater Process Technol, 2014; 214: 1131
[15] Cho D W, Cho W I, Na S J.J Manuf Process, 2014; 16: 26
[16] Nascimento P M, Batista C C, Sorrija A B, Voorwald J C H.Procedia Mater Sci, 2014; 3: 744
[17] Wang C, Liu W, Li J.Soil Dyn Earthq Eng, 2015; 79: 171
[18] Mahiskar G I, Chadge R B, Ambade S P, Patil A P.Procedia Mater Sci, 2014; 5: 2522
[19] Song Q Y, Heidarpour A, Zhao X L, Han L H.Thin Wall Struct, 2016; 98: 143
[20] Vilamosa V, Clausen A H, B?rvik T, Skjervold S R, Hopperstad O S.Int J Impact Eng, 2015; 86: 223
[21] Ou Z C, Yan C, Duan Z P, Pi A G, Huang F L.Int J Impact Eng, 2012; 42: 59
[22] Xu S Q, Ruan D, Beynon J H, Rong Y H.Mater Sci Eng, 2013; A573: 132
[23] Nathan S R, Balasubramanian V, Malarvizhi S, Rao A G.Defence Technol, 2015; 11: 308
[24] Ramesh M V L, Srinivasa Rao P, Venkateswara Rao V, Phani Prabhakar K V.Mater Today: Proceedings, 2015; 2: 2532
[25] Parkes D, Westerbaan D, Nayak S S, Zhou Y, Goodwin F, Bhole S, Chen D L.Mater Des, 2014; 56: 193
[26] Sadeghian M, Shamanian M, Shafyei A.Mater Des, 2014; 60: 678
[27] Yu F, Ben Jar P Y, Hendry M.Eng Fract Mech, 2015; 146: 41
[28] Prasad K, Srinivas M, Kamat S V.Mater Sci Eng, 2014; A590: 54
[29] Kou S.Welding Metallurgy 2nd Ed.New York: John Wiley and Sons Inc, 2003: 232
[1] 张志强,董利民,关少轩,杨锐. TC16钛合金辊模拉丝过程中的显微组织和力学性能[J]. 金属学报, 2017, 53(4): 415-422.
[2] 江鹏,袁同心,于彦东. 加工条件对多相V-Ti-Ni合金的显微组织和氢渗透性能的影响[J]. 金属学报, 2017, 53(4): 433-439.
[3] 刘丰刚,林鑫,宋衎,宋梦华,韩一帆,黄卫东. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334.
[4] 王峰,董海阔,王志,毛萍莉,刘正. Mg-5Al-xCa合金的热裂行为[J]. 金属学报, 2017, 53(2): 211-219.
[5] 席明哲,周玮,尚俊英,吕超,吴贞号,高士友. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J]. 金属学报, 2017, 53(2): 239-247.
[6] 耿遥祥,特古斯,汪海斌,董闯,王宇鑫. Sn的加入对MnFe(P, Si)合金显微组织和磁性的影响[J]. 金属学报, 2017, 53(1): 77-82.
[7] 杨忠波,赵文金,程竹青,邱军,张海,卓洪. Nb含量对 Zr-xNb-0.4Sn-0.3Fe合金耐腐蚀性能的影响[J]. 金属学报, 2017, 53(1): 47-56.
[8] 闫亚琼,罗晋如,张济山,庄林忠. 强织构AZ31镁合金板材深低温轧制过程中微观组织演变及力学性能控制研究[J]. 金属学报, 2017, 53(1): 107-113.
[9] 黄文普,喻寒琛,殷杰,王泽敏,曾晓雁. 激光选区熔化成形K4202镍基铸造高温合金的组织和性能*[J]. 金属学报, 2016, 52(9): 1089-1095.
[10] 王峰,马德志,王志,毛萍莉,刘正. AM50-x(Zn, Y)镁合金的显微组织、力学性能与凝固行为*[J]. 金属学报, 2016, 52(9): 1115-1122.
[11] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[12] 于冰冰,陈志勇,赵子博,刘建荣,王清江,李晋炜. TC17钛合金电子束焊接接头的显微组织与力学性能研究*[J]. 金属学报, 2016, 52(7): 831-841.
[13] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[14] 孙磊,陈明和,张亮,杨帆. Sn-Ag-Cu钎料焊接显微组织演化和性能研究[J]. 金属学报, 2016, 53(5): 615-621.
[15] 张笃秀, 李祎, 叶友雄, 沈阳志, 杨续跃. 微量Fe对冷轧超细晶Cu-30Zn-0.15Fe合金等温退火组织演化的影响*[J]. 金属学报, 2016, 52(3): 369-377.