Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 1017-1024    DOI: 10.11900/0412.1961.2015.00615
  论文 本期目录 | 过刊浏览 |
TA1/X65复合板焊接工艺及焊缝组织和性能研究*
毕宗岳1,2(),杨军1,2,刘海璋1,2,张万鹏1,2,杨耀彬1,2,田磊1,2,黄晓江1,2
1 国家石油天然气管材工程技术研究中心, 宝鸡 721008。
2 宝鸡石油钢管有限责任公司钢管研究院, 宝鸡 721008
INVESTIGATION ON THE WELDING PROCESS AND MICROSTRUCTURE AND MECHANICAL PROPERTY OF BUTT JOINTS OF TA1/X65 CLAD PLATES
Zongyue BI1,2(),Jun YANG1,2,Haizhang LIU1,2,Wanpeng ZHANG1,2,Yaobin YANG1,2,Lei TIAN1,2,Xiaojiang HUANG1,2
1 National Engineering Technology Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008, China.
2 Steel Pipe Research Institute of Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, China
引用本文:

毕宗岳,杨军,刘海璋,张万鹏,杨耀彬,田磊,黄晓江. TA1/X65复合板焊接工艺及焊缝组织和性能研究*[J]. 金属学报, 2016, 52(8): 1017-1024.
Zongyue BI, Jun YANG, Haizhang LIU, Wanpeng ZHANG, Yaobin YANG, Lei TIAN, Xiaojiang HUANG. INVESTIGATION ON THE WELDING PROCESS AND MICROSTRUCTURE AND MECHANICAL PROPERTY OF BUTT JOINTS OF TA1/X65 CLAD PLATES[J]. Acta Metall Sin, 2016, 52(8): 1017-1024.

全文: PDF(1258 KB)   HTML
摘要: 

采用TIG+MIG+MAG焊接工艺对TA1/ X65爆炸冶金复合板(复层Ti厚2 mm, 基层X65管线钢厚14 mm)试件进行了以V/Cu作为过渡填充金属的板-板对接焊实验. 利用OM, XRD, EDS面扫描, 显微硬度测试和拉伸实验, 研究了焊缝区组织特征、界面元素分布、主要物相、显微硬度分布及焊缝力学性能. 结果表明, 圆弧状“U”型坡口设计有利于过渡层Cu的MIG焊接, 在Cu-钢界面不会引起应力集中而萌生裂纹. 熔敷金属Ti, V, Cu和Fe有明显分区, 扩散互融现象不明显, 各区域间由固溶体相过渡连接, Ti/V过渡界面组织结构为钛基固溶体, V/Cu过渡界面组织结构为钒基固溶体, Cu/Fe过渡界面组织结构为铜基固溶体. 焊缝硬度较高区域出现在Ti/V过渡界面和V/Cu过渡界面处, 硬度达326和336 HV10, 对过渡界面层塑韧性有一定影响. 焊缝抗拉强度可达546 MPa, 主要由碳钢层贡献.

关键词 TIG+MIG+MAG焊接TA1/X65管线钢复合板金属间化合物V/Cu复合过渡固溶体    
Abstract

Titanium/steel clad material with excellent mechanical properties and corrosion resistance has important application in storage and transportation equipment of oil and gas. Due to the metallurgical incompatibility of titanium and steel, the mechanical properties of weld joint would completely lose when the brittle intermetallic phase TixFey and TiC appeared in the fusion welding process. Therefore, the gas tungsten arced welding (TIG), metal inert-gas welding (MIG) and metal active-gas welding (MAG) with V/Cu composite filler metals for butt joint in this study was carried out on TA1/X65 pipeline steel clad plates with thickness 16 mm ( titanium cladding with thickness 2 mm, X65 pipeline steel with thickness 14 mm). The microstructure, interface element distribution, main phase, microhardness distribution on cross section and mechanical properties of butt welds were investigated by using OM, XRD, EDS element mapping, microhardness and tensile test. The results indicate that the design of “U-type” circular groove advantageous to the MIG of Cu transition-metals, because of the “U-type” circular groove does not cause stress concentration and crack initiation. The deposited metal of Ti, V, Cu and Fe have obvious zoning, interdiffusion melting phenomenon is not severe, and by using solid solution phases to transit zonings of deposited metal. The microstructure of Ti and V transition interface was composed of Ti-based solid solution, the microstructure of V and Cu transition interface was composed of V-based solid solution, and the microstructure of Cu and Fe transition interface was composed of Cu-based solid solution. The high hardness region of butt weld cross section appeared in the Ti/V transition-interface and V/Cu transition-interface, the hardness value was respectively 326 HV10 and 336 HV10, and weakened the ductility of transition interfacial layer. A joint with a tensile strength of 546 MPa, mainly of that of the carbon steel was obtained.

Key wordsTIG+MIG+MAG welding    TA1/X65 pipeline steel clad plate    intermetallic compound    V/Cu composite transition    solid solution
收稿日期: 2015-11-30     
基金资助:* 国家高技术研究发展计划资助项目2013AA031303
Mater Mp / K Sh / (Jg-1K-1) Tc / (Wm-1K-1) Lec / (10-6 K-1) An Aw Ar / nm Lattice type
Fe 1810.15 481.5 66.7 11.76 26 55.85 0.127 bcc α-Fe, fcc γ-Fe, bcc δ-Fe
Cu 1357.15 376.8 359.2 16.60 29 63.54 0.128 bcc
V 2175.15 498.0 30.7 8.30 23 50.94 0.192 bcc
Ti 1950.15 539.1 13.8 8.20 22 47.87 0.145 hcp α-Ti, bcc β-Ti
表1  Fe, Cu, V和Ti的物理化学性质
Filler metal Welding
method
Nozzle size
mm
Voltage
V
Current
A
Wire feeding speed
(mmmin-1)
Welding speed
(mmmin-1)
Nozzle gas flow
(Lmin-1)
Pure Ti TIG 10 9.6 100 700 60 15~20
Pure V TIG 10 9.6 120 500 100 15~20
Pure Cu MIG 20 16.0 125 4572 350 20~25
Steel welding MAG
20 20.5 180 5080 300 20~25
Mixed gas:
(80%Ar +20%CO2)
20 24.5 225 6350 200
20 26.4 265 7620 180
表2  焊接参数
图1  焊缝坡口设计及焊接顺序示意图
图2  Ti/钢复合板焊缝横截面宏观组织
图3  图2中焊缝各区域的显微组织
Area Phase Atomic fraction / % Potential phase
Fe Ti Cu V
2 A 2.86 9.06 4.60 83.48 V(s,s)
B 1.09 6.67 90.06 2.18 Cu(s,s)
3 C 5.14 0 93.40 1.46 Cu(s,s)
D 13.65 0 9.92 76.53 V(s,s)
表3  图3中A~D 相的化学成分
图4  焊缝各区域的XRD谱
图5  图2中视域I~IV的EDS元素面扫描图
图6  焊缝横截面内纵向垂直线上显微硬度分布和焊缝应力-位移曲线及拉伸断裂试样
表4  图2中视域I~IV 的主要化学成分
[1] Zhang X Y, Zhao Y Q, Bai C G.Titanium Alloys and Their Applications .Beijing: Chemical Industry Press, 2005: 287
[1] (张喜燕, 赵永庆, 白晨光. 钛合金及应用. 北京: 化学工业出版社, 2005: 287)
[2] Yuan X J, Sheng G M, Qin B.Mater Charact, 2008; 59: 930
[3] Li G Q.Welded Pipe Tube, 2011; 34(11): 39
[3] (李国庆. 焊管, 2011; 34(11): 39)
[4] Xu G Z.Welded Pipe Tube, 2009; 32(11): 70
[4] (许贵芝. 焊管, 2009; 32(11): 70)
[5] Yang K, Wang Y J, Yun H T, Bai Y, Fu L.Welded Pipe Tube, 2015; 38(7): 6
[5] (杨凯, 王永军, 云海涛, 白颖, 傅莉. 焊管, 2015; 38(7): 6 )
[6] Sheng C C, Master Thesis Jiangsu University of Science and Technology, Zhenjiang, 2008
[6] (盛长城. 江苏科技大学硕士学位论文, 镇江, 2008)
[7] Li P, Li J L, Xiong J T, Zhang F S.J Aeronaut Mater, 2010; 30(5): 25
[7] (李鹏, 李京龙, 熊江涛, 张赋升. 航空材料学报, 2010; 30(5): 25)
[8] Liu P, Lu M, Ji X W, Huang Q, Dai R X.Ordnance Mater Sci Eng, 2011; 34(3): 14
[8] (刘鹏, 陆明, 冀鑫炜, 黄钦, 戴汝迅. 兵器材料科学与工程, 2011; 34(3): 14)
[9] Yan W, Master Thesis Northeastern University Shenyang, 2006
[9] (闫伟. 东北大学硕士学位论文, 沈阳, 2006)
[1] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[2] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[4] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[5] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[6] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[7] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[8] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[9] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[10] 董闯, 董丹丹, 王清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54(2): 293-300.
[11] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[12] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[13] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.