Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 938-944    DOI: 10.11900/0412.1961.2015.00592
  论文 本期目录 | 过刊浏览 |
轧制变形对喷射沉积含Nd镁合金织构及LPSO相的影响*
李振亮1(),刘飞1,袁爱萍1,段宝玉2,李晓伟2,李一鸣2
1 内蒙古科技大学材料与冶金学院, 包头 0140102。
2 内蒙古科技大学分析测试中心, 包头 014010。
EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd
Zhenliang LI1(),Fei LIU1,Aiping YUAN1,Baoyu DUAN2,Xiaowei LI2,Yiming LI2
1 School of Materials and Metallurgy, Inner Mongolia University of Science &Technology, Baotou 014010, China.
2 Analysis and Test Center, Inner Mongolia University of Science & Technology, Baotou 014010, China
引用本文:

李振亮,刘飞,袁爱萍,段宝玉,李晓伟,李一鸣. 轧制变形对喷射沉积含Nd镁合金织构及LPSO相的影响*[J]. 金属学报, 2016, 52(8): 938-944.
Zhenliang LI, Fei LIU, Aiping YUAN, Baoyu DUAN, Xiaowei LI, Yiming LI. EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd[J]. Acta Metall Sin, 2016, 52(8): 938-944.

全文: PDF(828 KB)   HTML
摘要: 

采用喷射沉积技术制备Mg-9Al-3Zn-1Mn-6Ca-2Nd 合金沉积坯, 对其进行挤压预变形和轧制变形(温度T=350 ℃; 道次压下率ε =20%, 25%, 30%). 利用SEM, TEM和XRD研究二次变形对尺寸不对称挤压坯中织构演变及LPSO相形成的影响. 结果表明: 镁合金板坯经350 ℃和道次压下率为20%轧制后, 在(Ca, Nd)Al2结构C15 型Laves 相基体形成24R结构Mg-Nd-Zn型LPSO相; 随着轧制变形程度增大(ε =20%, 25%, 30%)实现了形变织构的随机化, 纳米级C15粒子钉扎位错与亚晶引起的再结晶的共同作用是导致基面织构(0002), 柱面织构{100}<0001>及锥面织构{102}全面启动的主要原因.

关键词 镁合金尺寸不对称织构Mg-Nd-Zn型LPSO相C15型Laves相    
Abstract

Mg alloys have been applied widely as structural materials over the past decades, with low density, high specific strength, stiffness, specific elastic modulus, and high recycling rate. However, their features of poor ductility and formability at room temperature have limited their application due to hexagonal close-packed crystal structure with less independent slip systems. Grain refinement and texture randomization are two means to activate other slip systems. In this work, the billets of Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy produced by spraying deposition method (the Osprey process) were studied in order to analyze the effect of rolling deformation at 350 ℃ and pass reduction ε =20%, 25% and 30% on texture and microstructure evolution of an extruded size-asymmetry Mg alloy by SEM, TEM and XRD. The results show that under the condition of reduction of ε =20% at 350 ℃, a long-period stacking ordered phase with 24R structure was formed in (Ca, Nd)Al2 phase (C15 Laves phase ). All of basal texture (0002), prismatic texture {100}<0001>, and pyramidal texture {102} were activated, with pole density level weakened while pass reduction increased (ε =20%, 25% and 30%), namely, texture randomization achieved in Mg alloy, with main causes of nanometer-sized dispersed C15 phase impeding dislocation movement and sub-cells inducing the process of recrystallization.

Key wordsMg alloy    size-asymmetry    texture    LPSO phase of Mg-Nd-Zn    C15 Laves phase
收稿日期: 2015-11-16     
基金资助:* 国家自然科学基金资助项目51364032
图1  喷射沉积镁合金板坯经不同变形程度轧制后的极图
图2  喷射沉积镁合金板材经不同变形程度轧制后的SEM像
图3  350 ℃和ε =20%变形后镁合金板坯中第二相的TEM像及结构分析
Area Mass fraction / % Atomic fraction / %
Mg Al Ca Nd Zn Mg Al Ca Nd Zn
A 38.4 22.9 28.5 7.4 2.8 49.1 26.1 21.9 1.6 1.3
B 57.1 21.0 13.8 5.4 2.7 67.2 21.3 9.4 1.0 1.1
C 40.3 23.6 20.0 8.9 7.2 51.8 27.3 15.6 1.9 3.4
表1  图3中A, B和C处的EDS分析结果
[1] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y.Scr Mater, 2005; 53: 799
[2] Li Z L, Jia G D.Spec Cast Nonferrous Alloy, 2015; 35: 923
[2] (李振亮, 贾国栋. 特种铸造及有色合金, 2015; 35: 923)
[3] Li Z L, Ren H P, Jin Z L, Zhang J, Chen W, Zhai J.Rare Met Mater Eng, 2014; 43: 2728
[3] (李振亮, 任慧平, 金自力, 张婧, 陈伟, 翟景. 稀有金属材料与工程, 2014; 43: 2728)
[4] Zhang X G, Meng L G, Fang C F, Peng P, Ja F, Hao H.Mater Sci Eng, 2013; A586: 19
[5] Cui C L, Zhu T L, Leng Z, Wu R Z, Zhang J H, Zhang M L.Acta Metall Sin, 2012; 48: 725
[5] (崔崇亮, 朱天龙, 冷哲, 巫瑞智, 张景怀, 张密林. 金属学报, 2012; 48: 725)
[6] Li Z L, Zhang J, Wang X W, Chen W, Zhai J.Chin Rare Earths, 2015; 36(3): 21
[6] (李振亮, 张婧, 王雪威, 陈伟, 翟景. 稀土, 2015; 36(3): 21)
[7] Suzuki A, Saddock N D, Jones J W, Pollock T M.Acta Mater, 2005; 53: 2823
[8] Koike J. Mater Sci Forum, 2003; 419-422: 189
[9] Tong L B, Li X H, Zhang H J.Mater Sci Eng, 2013; A563: 177
[10] Inoue A, Matsushita M, Kawamura Y, Amiya K, Hayashi K, Koike J.Mater Trans, 2002; 43: 580
[11] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M.Mater Sci Eng, 2004; A386: 447
[12] Wang L N, Yang P, Xia W J, Chen Z H, Chen D, Li X, Meng L.Acta Metall Sin, 2009; 45: 58
[12] (王丽娜, 杨平, 夏伟军, 陈振华, 陈鼎, 李萧, 孟利. 金属学报, 2009; 45: 58)
[13] Xia W J, Cai J G, Chen Z H, Chen G, Jiang J F.Chin J Nonferrous Met, 2010; 20: 1247
[13] (夏伟军, 蔡建国, 陈振华, 陈刚, 蒋俊峰. 中国有色金属学报, 2010; 20: 1247)
[14] Yuan A P. , Master Thesis University of Science and Technology Inner Mongolia, Baotou, 2015
[14] (袁爱萍. 内蒙古科技大学硕士学位论文 ,包头, 2015)
[15] Itoi T, Seimiya T, Kawamura Y, Hirohashi M.Scr Mater, 2004; 51: 107
[16] Chen Z H. Wrought Magnesium Alloy.Beijing: Chemical Industry Press, 2005: 60
[16] (陈振华. 变形镁合金. 北京: 化学工业出版社, 2005: 60)
[17] Chino Y, Kado M, Mabuchi M.Mater Sci Eng, 2008; A494: 343
[18] Chino Y, Kado M, Mabuchi M.Acta Mater, 2008; 56: 387
[19] Galiyev A, Kaibyshev R, Gottstein G.Acta Mater, 2001; 49: 1199
[20] Agnew S R, Duygulu ?.Int J Plast, 2005; 21: 1161
[21] Agnew S R, Yoo M H, Tomé C N.Acta Mater, 2001; 49: 4277
[22] Huang J F, Li Y B, Luo H R, Cui H, Cai Y H, Duan X J, Zhang J S.J Univ Sci Technol Beijing, 2008; 30: 408
[22] (黄进峰, 李永兵, 罗海荣, 崔华, 蔡元华, 段先进, 张济山. 北京科技大学学报, 2008; 30: 408)
[23] Meng Q, Cai Q W, Jiang H T, Hu S P, Li Z.J Univ Sci Technol Beijing, 2011; 33: 47
[23] (孟强, 蔡庆伍, 江海涛, 胡水平, 李振. 北京科技大学学报, 2011; 33: 47)
[24] Poliak E I, Jonas J J.Acta Mater, 1996; 44: 127
[25] Kawamura Y, Kasahara T, Izumi S, Yamasaki M.Scr Mater, 2006; 55: 453
[26] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J.J Mater Res, 2001; 16: 1894
[27] Suzuki A, Saddock N D, Jones J W, Pollock T M.Scr Mater, 2004; 51: 1005
[28] Abe E, Kawamura Y, Hayashi K, Inoue A.Acta Mater, 2002; 50: 3845
[29] Wang H M, Wang Y F.Mater Rev, 2010; 24: 467
[29] (王红梅, 王宇飞. 材料导报, 2010; 24: 467)
[30] Zhu Y M, Morton A J, Nie J F.Acta Mater, 2010; 58: 2936
[31] Zhu Y M, Morton A J, Nie J F.Acta Mater, 2012; 60: 6562
[32] Nishida M, Yamamuro T, Nagano M, Morizono Y, Kawamura Y. Mater Sci Forum, 2003; 419-422: 715
[33] Matsuura M, Konno K, Yoshida M, Nishijima M, Hiraga K.Mater Trans, 2006; 47: 1264
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[9] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[10] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[11] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[12] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[13] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[14] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[15] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.