Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 641-648    DOI: 10.11900/0412.1961.2015.00590
  论文 本期目录 | 过刊浏览 |
FB2马氏体耐热钢中Laves相在焊接过程中演化行为的研究*
李克俭1,蔡志鹏1,2,3(),李轶非1,潘际銮1
1 清华大学机械工程系, 北京 100084
2 清华大学摩擦学国家重点实验室, 北京 100084
3 清华大学先进核能技术协同创新中心, 北京 100084
EVOLUTION BEHAVIOR OF LAVES PHASE IN FB2 MARTENSITIC STAINLESS STEEL DURING WELDING
Kejian LI1,Zhipeng CAI1,2,3(),Yifei LI1,Jiluan PAN1
1 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China .
2 State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
3 Collabrative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, Beijing 100084, China
引用本文:

李克俭,蔡志鹏,李轶非,潘际銮. FB2马氏体耐热钢中Laves相在焊接过程中演化行为的研究*[J]. 金属学报, 2016, 52(6): 641-648.
Kejian LI, Zhipeng CAI, Yifei LI, Jiluan PAN. EVOLUTION BEHAVIOR OF LAVES PHASE IN FB2 MARTENSITIC STAINLESS STEEL DURING WELDING[J]. Acta Metall Sin, 2016, 52(6): 641-648.

全文: PDF(1001 KB)   HTML
摘要: 

采用热模拟的方法研究了FB2钢(一种新型9%Cr马氏体耐热钢)中Laves相在焊接热循环中的演化行为. 首先借助SEM观察到存在于原始供货状态下的FB2钢中尺寸在微米级别的Laves相颗粒; 进一步的分析表明, 这些Laves相的出现是由铸造过程中的枝晶偏析导致的. 焊接热模拟实验结果表明, 在加热过程中, Laves相与基体γ-Fe发生共晶反应导致的组分液化会给FB2钢热影响区带来热裂倾向; 在冷却后的样品中发现了一些网状的共晶组织, 利用SEM/EDS和TEM分别得到了该共晶组织的成分信息和结构信息, 确定该共晶组织的2个组分为χ相和γ-Fe. 在此基础之上, 较为详细地分析了不同峰值温度热模拟后样品中共晶组织的形成过程, 解释了共晶组织不同形貌的产生原因.

关键词 FB2钢Laves相组分液化 χ 热裂倾向焊接    
Abstract

Elevating steam parameters is the key to enhance the efficiency of fossil power plants, reducing fuel consumption and noxious emission. Therefore, a lot of new creep resistant martensitic stainless steels have been developed, among which FB2 steel (a new 9%Cr martensitic stainless steel) is the most promising candidate for manufacturing steam turbine rotors operated at temperature range from 600 ℃ to 650 ℃. In the present work, the evolution behavior of Laves phase in the as received FB2 steel was studied by thermal simulation technique. Firstly, some sparse micron-sized particles of Laves phase were observed in as received FB2 steel by SEM. It was concluded that the large Laves phase particles formed in casting due to dendritic segregation. Then constitutional liquation resulting from eutectic reaction between Laves phase and γ-Fe in the heating process of welding thermal simulation was found, suggesting a liquation crack tendency in heat affected zone of FB2 steel. In the specimens experiencing thermal simulation, some eutectic microstructures were observed by SEM. Based on the results of EDS analysis and SAED, the two eutectic constituents were identified as χ phase and γ-Fe. At last, the reason for the difference in morphology of eutectic microstructures between specimens experiencing thermal simulation with different peak temperatures was analyzed.

Key wordsFB2 steel    Laves phase    constitutional liquation    χ    phase    hot crack tendency    welding
收稿日期: 2015-11-16     
图1  用聚焦离子束(FIB)制取共晶组织TEM样品的过程
图2  供货状态下FB2钢中的Laves相的二次电子像及EDS分析结果
图3  经峰值温度为1150和1200 ℃热模拟后的Laves相的SEM像及EDS结果
图4  峰值温度为1250 ℃热模拟后的SEM像
图5  峰值温度为1350 ℃热模拟后的SEM像
图6  网状共晶组分的平衡凝固路径
图7  经峰值温度为1350 ℃热模拟后的样品中的共晶组织的TEM明场像及SAED谱
Material Fe Cr Mo Ni Ref.
CF-8M austenitic stainless steel 45 26 20 4 [22]
316 austenitic stainless steel 52 21 22 5 [25]
FB2 martensitic stainless steel EDS 1 52.60 23.28 20.36 0 This work
EDS 2 54.15 22.83 20.03 0 This work
表1  文献中χ相的化学成分与本研究中共晶组分成分对比
[1] Sun R, Cui Z Z, Tao Y.In: Gandy D, Shingledecker J eds., Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference, Novelty, Ohio: ASM International, 2014: 1
[2] Di Gianfrancesco A, Tizzanini A, Jedamzik M, Stolzenberger C.In: Gandy D, Shingledecker J eds., Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference, Novelty, Ohio: ASM International, 2014: 9
[3] Fukuda M, Saito E, Semba H, Iwasaki J, Izumi S, Takano S, Takahashi T, Sumiyoshi Y.In: Grandy D, Shingledecker J eds., Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference, Novelty, Ohio: ASM International, 2014: 24
[4] Jara D R.PhD Dissertation, Ruhr University Bochum, 2011
[5] Mayr P.PhD Dissertation, Graz University of Technology, 2007
[6] Di Gianfrancesco A, Budano S, Lombardi P, Paura M, Neri S, Calderini M, Longari N.In: Gandy D, Shingledecker J eds., Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference, Novelty, Ohio: ASM International, 2014: 304
[7] Blaes N, Donth B, Bokelmann D.Energy Mater, 2007; 2(4): 207
[8] Azuma T, Miki K, Tanaka Y, Isshiguro T.Tetsu Hagané, 2002; 88: 678
[8] (東司, 三木一宏, 田中泰彦, 石黒徹.鉄と鋼, 2002; 88: 678)
[9] Horiuchi T, Igarashi M, Abe F.ISIJ Int, 2002; 42(suppl): S67
[10] Shige T, Magoshi R, Itou S, Ichimura T, Kondou Y.Mitsubishi Heavy Industry Tech Rev, 2001; 38(1): 6
[11] Dzugan J, Novy Z, Konopik P, Podany P.In: Gandy D, Shingledecker J eds., Advances in Materials Technology for Fossil Power Plants Proceedings from the Seventh International Conference, Novelty, Ohio: ASM International, 2014: 924
[12] Xu Y T, Wang M J, Wang Y, Gu T, Chen L, Zhou X, Ma Q, Liu Y M, Huang J.J Alloys Compd, 2015; 621: 93
[13] Dimmler G, Weinert P, Kozeschnik E, Cerjak H.Mater Charact, 2003; 51: 341
[14] Cui H R, Sun F, Chen K, Zhang L T, Wan R C, Shan A D, Wu J S.Mater Sci Eng, 2010; A527: 7505
[15] Korcakova L, Hald J, Somers M.Mater Charact, 2001; 47: 111
[16] Jandová D, Kasl J, Chvostová E.Mater Sci Forum, 2014; 782: 311
[17] Kasl J, Jandová D.Mater Sci Forum, 2014; 782: 179
[18] Brooks J A.Weld J, 1974; 53(suppl): S517
[19] Ying H Y, Shi C G, Hao C Y, Yu E J, Qin X D, Zhang Q.Acta Metall Sin, 1997; 33: 995
[19] (应慧筠, 施成根, 郝传勇, 于尔靖, 秦旭东, 张琪. 金属学报, 1997; 33: 995)
[20] Vagi J J, Martin D C.Weld J, 1956; 35(suppl 3): 137s
[21] Kasper J S.Acta Metall, 1954; 2: 456
[22] Cieslak M J, Ritter A M, Savage W F.Weld J, 1984; 63: 133
[23] Kautz H R, Gerlach H.Arch Eisenhuttenw, 1968; 39: 151
[24] Omsen A, Eliasson L.ISIJ Int, 1971; 209: 830
[25] Weiss B, Stickler R.Metall Trans, 1972; 3A: 851
[1] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
[6] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[7] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[8] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[9] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[10] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[11] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[12] 王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.
[13] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[14] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[15] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.