Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 761-768    DOI: 10.11900/0412.1961.2015.00572
  论文 本期目录 | 过刊浏览 |
共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*
郭巍巍1(),齐成军1,李小武1,2
1 东北大学材料科学与工程学院材料物理与化学研究所, 沈阳 110819
2 东北大学材料各向异性与织构教育部重点实验室, 沈阳 110819
INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS
Weiwei GUO1(),Chengjun QI1,Xiaowu LI1,2
1 Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
全文: PDF(1137 KB)   HTML
摘要: 

在不同塑性应变幅下对共轭双滑移和[017]临界双滑移取向Cu单晶体进行疲劳实验直至循环饱和, 然后在不同温度下进行退火处理, 考察了其位错结构的热稳定性. 结果表明, 300 ℃退火处理后, 位错结构发生了明显的回复; 500和800 ℃退火处理后, 均发生了明显的再结晶现象, 并伴随退火孪晶的形成. 不同取向Cu单晶体循环变形后形成不同的位错结构, 其热稳定性由高到低依次为: 脉络结构、驻留滑移带(PSB)结构、迷宫或胞结构. 不同取向疲劳变形Cu单晶体中形成的退火孪晶均沿着疲劳后开动的滑移面方向发展, 疲劳后的滑移变形程度越高, 退火后形成的孪晶数量则越多. 但过高的退火温度(如800 ℃)会加快再结晶晶界的迁移速率, 进而抑制孪晶的形成, 致使孪晶数量有所减少.

关键词 Cu单晶体疲劳位错结构热稳定性晶体取向再结晶退火孪晶    
Abstract

It is well known that the cyclic deformation behavior and dislocation structures of Cu single crystals with different orientations have been systematically investigated and understood. However, there is as yet no general and unequivocal knowledge of the thermal stability of fatigue-induced dislocation structures in Cu single crystals, which is particularly significant for the further improvement of low energy dislocation structure (LEDS) theory. In previous work, the thermal stability of fatigue dislocation structures in 18 41] single-slip and coplanar double-slip Cu single crystals have been reported. For deeply understanding the orientation-dependent thermal stability of fatigue dislocation structures, in the present work, conjugate and [017] critical double-slip-oriented Cu single crystals were cyclically deformed at different plastic strain amplitudes γpl up to saturation, and then annealed at different temperatures (300, 500 and 800 ℃) for 30 min, to examine the thermal stability of various fatigue-induced dislocation structures. It was found that an obvious recovery has occurred in various dislocation structures at 300 ℃. At the higher temperatures, e.g., 500 and 800 ℃, a remarkable recrystallization phenomenon takes place together with the formation of many annealing twins. The thermal stability of various dislocation structures produced in fatigued Cu single crystals with different orientations from high to low are on the order of vein structure, persistent slip band (PSB) structure, labyrinth structure and dislocation cells. The annealing twins formed in Cu single crystals with different orientations all develop strictly along the dislocation slip planes, which have been operated under fatigue deformation. The more serious the fatigue-induced slip deformation, the greater the amount of annealing twins would be. Furthermore, an over high annealing temperature, e.g. 800 ℃, would greatly speed up the migration of boundaries of recrystallized grains to restrain the formation of annealing twins, leading to, more or less, the decrease in the amount of twins.

Key wordsCu single crystal    fatigue dislocation structure    thermal stability    crystallographic orientation    recrystallization    annealing twin
收稿日期: 2015-11-09      出版日期: 2016-03-31
基金资助:* 国家自然科学基金项目51071041, 51231002, 51271054和51571058, 以及高等学校博士学科点专项科研基金博导类项目20110042110017资助

引用本文:

郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS. Acta Metall Sin, 2016, 52(6): 761-768.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00572      或      http://www.ams.org.cn/CN/Y2016/V52/I6/761

Sample γpl N / cyc γpl, cum τs / MPa
1.5×10-4 82000 49.2 29.6
1.5×10-3 10100 60.0 29.4
[017] 6.5×10-3 2620 68.1 49.2
表1  和[017] Cu单晶体疲劳实验条件和循环饱和数据
图1  Cu单晶体在应变幅γpl =1.5×10-4下循环饱和位错结构及其在不同温度退火30 min后的微观结构
图2  Cu单晶体在应变幅γpl=1.5×10-3下循环饱和位错结构及其在不同温度退火30 min后的微观结构
图3  [017] Cu单晶体在应变幅γpl=6.5×10-3下循环饱和位错结构及其在不同温度退火30 min后的微观结构
图4  Cu单晶体在应变幅γpl =1.5×10-4下循环饱和后再在不同温度退火30 min后微观结构的TEM像
图5  Cu单晶体在应变幅γpl= 1.5×10-3下循环饱和后再在不同温度退火30 min后微观结构的TEM像
图6  [017] Cu单晶体在应变蝠γpl=6.5×10-3下循环饱和后再在不同温度退火30 min后微观结构的TEM像
图7  [017] Cu单晶体在应变幅γpl =6.5×10-3下循环变形饱和后的DSC曲线
[1] Mughrabi H.Mater Sci Eng, 1978; 33: 207
[2] Jin N Y, Winter A T.Acta Metall, 1984; 32: 989
[3] Ackermann F, Kubin L P, Lepinous J, Mughrabi H.Acta Metall, 1984; 32: 715
[4] Basinski Z S, Basinski S J.Prog Mater Sci, 1992; 36: 89
[5] Suresh S.Fatigue of Materials. 2nd Ed., London: Cambridge University Press, 1998: 28
[6] Li X W, Hu Y M, Wang Z G.Mater Sci Eng, 1998; A248: 299
[7] Li X W, Wang Z G, Li S X.Phil Mag Lett, 1999; 79: 715
[8] Li X W, Wang Z G, Li S X.Mater Sci Eng, 1999; A260: 132
[9] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y. Defect Diffusion Forum, 2001; 188-199: 153
[10] Li X W, Umakoshi Y, Gong B, Li S X, Wang Z G.Mater Sci Eng, 2002; A333: 51
[11] Zhou Y, Li X W, Yang R Q.Int J Mater Res, 2008; 99: 958
[12] Li P, Li S X, Wang Z G, Zhang Z F.Acta Mater, 2010; 58: 3281
[13] Tahata T, Fujita H, Hiraoka M, Onishi I C.Philos Mag, 1983; 47A: 841
[14] Wang Z R.Scr Mater, 1998; 39: 493
[15] Chen S, Gottstein S.Mater Sci Eng, 1989; 110: 9
[16] Zhu R, Li S X, Li Y, Li M Y, Chao Y S.Acta Metall Sin, 2004; 40: 467
[16] (朱荣, 李守新, 李勇, 李明扬, 晁月盛. 金属学报, 2004; 40: 467)
[17] Xiao S H, Guo J D, Wu S D, He G H, Li S X.Scr Mater, 2002; 41: 1
[18] Guo W W, Qi C J, Yan Y, Li X W.Chin J Nonferrous Met, 2014; 24: 2718
[18] (郭巍巍, 齐成军, 颜莹, 李小武. 中国有色金属学报, 2014; 24: 2718)
[19] Guo W W, Ren H, Qi C J, Li X W.Acta Phys Sin, 2012; 61: 156201-1
[19] (郭巍巍, 任焕, 齐成军, 李小武. 物理学报, 2012; 61: 156201-1)
[20] Guo W W, Qi C J, Li X W.Acta Metall Sin, 2013; 49: 107
[20] (郭巍巍, 齐成军, 李小武. 金属学报, 2013; 49: 107)
[21] Carpenter H, Tamura S.Proc R Soc, 1926; 113A: 161
[22] Burke J E Jr.J Met, 1950; 188: 1324
[23] Fullman R L, Fischer J C.J Appl Phys, 1951; 22: 1350
[24] Gleiter H.Acta Metall, 1969; 17: 1421
[25] Gindraux G, Form W.J Inst Met, 1973; 101: 85
[26] Dash S, Brown N.Acta Metall, 1963; 11: 1067
[27] Meyers M A, Murr L E.Acta Metall, 1978; 26: 951
[28] Mahajan S, Pande C S, Imam M A, Rath B B.Acta Mater, 1997; 45: 2633
[29] Li X W, Zhou Y.J Mater Sci, 2007; 42: 4716
[30] Guo W W, Wang X M, Li X W.Mater Trans, 2010; 51: 887
[31] Xia S, Li H, Zhou B X, Chen W J.Chin J Nature, 2010; 32: 94
[31] (夏爽, 李慧, 周邦新, 陈文觉. 自然杂志, 2010; 32: 94)
[1] 祝佳林,刘施峰,曹宇,柳亚辉,邓超,刘庆. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响[J]. 金属学报, 2019, 55(8): 1019-1033.
[2] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[3] 邓亚辉, 杨银辉, 曹建春, 钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[4] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[5] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[6] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[7] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[8] 黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018, 54(3): 377-384.
[9] 刘永长, 张宏军, 郭倩颖, 周晓胜, 马宗青, 黄远, 李会军. Inconel 718变形高温合金热加工组织演变与发展趋势[J]. 金属学报, 2018, 54(11): 1653-1664.
[10] 王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
[11] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[12] 韦康, 张麦仓, 谢锡善. 超超临界电站用镍基合金热加工过程的再结晶机理[J]. 金属学报, 2017, 53(12): 1611-1619.
[13] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[14] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[15] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.