Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 965-972    DOI: 10.11900/0412.1961.2015.00548
  论文 本期目录 | 过刊浏览 |
X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*
刘智勇1,2(),李宗书1,2,湛小琳1,2,皇甫文珠1,2,杜翠薇1,2,李晓刚1,2,3
1 北京科技大学腐蚀与防护中心, 北京 100083。
2 北京科技大学新材料技术研究院腐蚀与防护教育部重点实验室, 北京 100083。
3 中国科学院宁波材料技术与工程研究所, 宁波 315201
GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION
Zhiyong LIU1,2(),Zongshu LI1,2,Xiaolin ZHAN1,2,Wenzhu HUANGFU1,2,Cuiwei DU1,2,Xiaogang LI1,2,3
1) Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China.
2) Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
3) Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
全文: PDF(967 KB)   HTML
摘要: 

采用电化学极化曲线测试、EIS测试、裂纹扩展实验和SEM分析研究了X80管线钢在鹰潭土壤溶液环境下的应力腐蚀开裂(SCC)裂纹扩展行为及机理. 结果表明, X80管线钢在酸性土壤环境中的裂纹扩展速率随着外加电位的降低呈现增加趋势, 相较于开路电位下的裂纹扩展, 在裂纹扩展初期, -850 mV下裂纹扩展速率较大, 而在裂纹快速扩展阶段, 过保护电位-1200 mV下裂纹扩展速率更大; 同时X80管线钢在酸性土壤环境中的SCC裂纹扩展机制也随着施加外加电位的不同而改变, 在外加电位高于-930 mV时为阳极溶解与氢脆的混合机制, 负于-930 mV时则为氢脆机制.

关键词 X80管线钢外加电位应力腐蚀开裂裂纹扩展    
Abstract

Stress corrosion cracking (SCC) in soil environments is one of the major failure and accident causes for oil and gas pipelines, which have induced hundreds of damages all over the world, resulting in serious economic losses and casualties. Previous study showed that acidic soil environments in Southeast of China are highly sensitive to SCC of pipeline steels. However, there is less research on the behavior and mechanism of growth behavior of SCC in this environment up to date. SCC behavior and mechanism of X80 pipeline steel in the simulated solution of Yingtan in China was investigated with electrochemical polarization curves, EIS, slow-rate-loading crack-growth test and SEM. Results showed that the applied polarization potential played an important role in SCC growth behavior and mechanism of X80 pipeline steel in the simulated solution of the acid soil environment. With the decreasing of the applied potential, the crack propagation rate increased constantly. In comparison to the crack propagation at the open circuit potential, the cracks extended faster in the initial stage of crack propagation when the applied potential was -850 mV; nevertheless, in the rapid propagation stage, the rate of the propagation was magnified with the application of -1200 mV potential. In addition, the crack propagation mode varied with applied potentials: it was mixed-controlled by both anodic dissolution (AD) and hydrogen embrittlement (HE) when the applied potential was more positive than -930 mV, and only in control of HE when the potential was less than -930 mV.

Key wordsX80 pipeline steel    applied potential    stress corrosion cracking    crack propagation
收稿日期: 2015-10-27      出版日期: 2016-06-03
基金资助:* 国家重点基础研究发展计划项目2014CB643300, 国家自然科学基金项目51371036, 51131001, 51471034和北京市青年英才计划项资助

引用本文:

刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION. Acta Metall Sin, 2016, 52(8): 965-972.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00548      或      http://www.ams.org.cn/CN/Y2016/V52/I8/965

图1  裂纹扩展试样示意图
图2  裂纹扩展实验装置示意图
图3  X80钢在模拟溶液中的快速和慢速扫描极化曲线
图4  X80钢在模拟溶液中不同外加电位下的Nyquist图和Bode图
图5  X80钢在模拟溶液中不同外加电位下的Nyquist等效电路
图6  X80钢在模拟溶液中不同外加电位下的应力与时间关系曲线
图7  X80钢在模拟溶液中恒电位极化电流与拉应力曲线对应关系
图8  X80钢在模拟溶液中不同外加电位下裂纹扩展长度与时间关系曲线
图9  X80钢在模拟溶液中不同外加电位下裂纹扩展速率与时间关系曲线
图10  X80钢在模拟溶液中不同外加电位下裂纹形貌的SEM像
[1] Cheng Y F.Electrochim Acta, 2007; 52: 2661
[2] Liu Z Y, Cui Z Y, Li X G, Du C W, Xing Y Y.Electrochem Commun, 2014; 48: 127
[3] Liu Z Y, Li X G, Du C W, Chen X, Liang P, Zhang L.Oil Gas Storage Transp, 2008; 27(4): 34
[3] (刘智勇, 李晓刚, 杜翠薇, 陈旭, 梁平, 张亮. 油气储运, 2008; 27(4): 34)
[4] Liu Z Y, Wang C P, Du C W, Li X G.Acta Metall Sin, 2011; 47: 1434
[4] (刘智勇, 王长朋, 杜翠薇, 李晓刚. 金属学报, 2011; 47: 1434)
[5] Zhou J L, Li X G, Du C W, Li Y L, Li T, Pan Y.Acta Metall Sin, 2010; 46: 251
[5] (周建龙, 李晓刚, 杜翠薇, 李云玲, 李涛, 潘莹. 金属学报, 2010; 46: 251)
[6] Kang Y W, Chen W X, Kania R, Boven G V, Worthingham R.Corros Sci, 2011; 53: 968
[7] Liu Z Y, Li X G, Du C W, Cheng Y F.Corros Sci, 2009; 51: 2863
[8] Nanfredi C, Otegui J L.Eng Fail Anal, 2002; 9: 495
[9] Arafin M A, Szpunar J A.Corros Sci, 2009; 51: 119
[10] Jack T R, Erno B, Krist K.Corrosion, 2000; 362: 10
[11] Li B T, Song F M, Gao M, Elboujdaini M.Corros Sci, 2010; 52: 4064
[12] Li M C, Cheng F M.Electrochim Acta, 2008; 53: 2831
[13] Song F M..Corros Sci, 2009; 51: 2657
[14] Li Q, Liu Z Y, Du C W, Li X G, Liu R K.Surf Technol, 2015; 44(3): 31
[14] (李琼, 刘智勇, 杜翠薇, 李晓刚, 刘然克. 表面技术, 2015; 44(3): 31)
[15] Gonzalez-Rodriguez J G, Casales M, Salinas-Bravo V M, Albarran J L, Martinez L.Corrosion, 2002; 58: 584
[16] Javidi M, Hore S B.Corros Sci, 2014; 80: 213
[17] Liu Z Y, Li X G, Cheng Y F.Corros Sci, 2012; 55: 54
[18] He D X, Chen W, Luo J L.Corrosion, 2004; 60: 778
[19] Parkins R N, Blanchard W K Jr,Delanty B S.Corrosion, 1994; 50: 394
[20] Park J J, Pyun S I, Na K H, Lee S M, Kho Y T.Corrosion, 2002; 58: 329
[21] Yan M C, Sun C, Xu J, Wu T Q, Yang S, Ke W.Corros Sci, 2015; 93: 27
[22] Cheng Y F, Niu L.Electrochem Commun, 2007; 9: 558
[23] Cao C N.Principles of Electrochemistry of Corrosion. 2nd Ed.,Beijing: Chemical Industry Press, 2003: 111
[23] (曹楚南. 腐蚀电化学原理. 第二版, 北京: 北京化学工业出版社, 2003: 111)
[24] Pan B W, Peng X, Chu W Y.Mater Sci Eng, 2006; A434: 76
[25] He D X, Chen W, Luo J L.Corrosion, 2004; 8: 778
[26] Chen W, King F, Vokes E D.Corrosion, 2002; 3: 267
[27] Liu Z Y, Zhai G L, Du C W, Li X G.Acta Metall Sin, 2008; 44: 209
[27] (刘智勇, 翟国丽, 杜翠薇, 李晓刚. 金属学报, 2008; 44: 209)
[28] Xu C M, Huo C Y, Xiong Q R, Shi K, Yang A M, Zhou Y.Mater Mech Eng, 2009; 33(5): 29
[28] (胥聪敏, 霍春勇, 熊庆人, 石凯, 杨爱民, 周勇. 机械工程材料, 2009; 33(5): 29)
[29] Lu B T, Luo J L.Corrosion, 2006; 26: 129
[30] Liu Z Y, Lu L, Huang Y Z, Du C W, Li X G.Corrosion, 2014; 70: 678
[31] Fan L, Liu Z Y, Du C W, Li X G.Acta Metall Sin, 2013; 49: 689
[31] (范林, 刘智勇, 杜翠薇, 李晓刚. 金属学报, 2013; 49: 689)
[32] Wang X Z, Liu Z Y, Ge X, Zhan X L, Du C W, Li X G.Corrosion, 2014; 70: 872
[1] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[2] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[3] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[4] 王瑾, 余黎明, 黄远, 李会军, 刘永长. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响[J]. 金属学报, 2018, 54(1): 47-54.
[5] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[6] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[7] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[8] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[9] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[10] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[11] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[12] 佴启亮,董建新,张麦仓,姚志浩. 多组织因素对GH4738合金裂纹扩展速率的交互影响*[J]. 金属学报, 2016, 52(2): 151-160.
[13] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[14] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[15] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.