Please wait a minute...
金属学报  2016, Vol. 52 Issue (8): 1009-1016    DOI: 10.11900/0412.1961.2015.00541
  论文 本期目录 | 过刊浏览 |
实用型数值回归法在三元铝合金互扩散系数计算中的应用*
刘远荣,陈伟民,汤颖,杜勇,张利军()
中南大学粉末冶金国家重点实验室, 长沙 410083
APPLICATION OF PRAGMATIC NUMERICAL INVERSE METHOD IN COMPUTATION OF INTERDIFFUSION COEFFICIENTS IN Al TERNARY ALLOYS
Yuanrong LIU,Weimin CHEN,Ying TANG,Yong DU,Lijun ZHANG()
State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, China
引用本文:

刘远荣,陈伟民,汤颖,杜勇,张利军. 实用型数值回归法在三元铝合金互扩散系数计算中的应用*[J]. 金属学报, 2016, 52(8): 1009-1016.
Yuanrong LIU, Weimin CHEN, Ying TANG, Yong DU, Lijun ZHANG. APPLICATION OF PRAGMATIC NUMERICAL INVERSE METHOD IN COMPUTATION OF INTERDIFFUSION COEFFICIENTS IN Al TERNARY ALLOYS[J]. Acta Metall Sin, 2016, 52(8): 1009-1016.

全文: PDF(1091 KB)   HTML
摘要: 

制备了bcc结构Al-Fe-Mn和fcc结构Al-Cu-Ni三元铝合金单相固态半无限长和有限长 (或薄膜型) 扩散偶, 通过EPMA测得相应成分-距离曲线, 并采用实用型数值回归法计算了相应合金体系1273 K时随成分变化的互扩散系数, 所得结果均满足热力学稳定条件. 基于所测得互扩散系数及Fick第二定律, 重现了实验测定的成分-距离曲线, 证实了所获得互扩散系数的可靠性. 进一步分析结果表明, 该实用型数值回归法不仅可以高效准确地计算单相三元扩散偶随成分变化的互扩散系数, 还能很好地解决传统方法不能处理的情况, 如扩散通道上无交点的扩散偶和有限长 (或薄膜型) 扩散偶等.

关键词 铝合金扩散互扩散系数数值回归法    
Abstract

Owing to excellent mechanical properties, Al alloys are widely used in aerospace, automotive and civil industry. In order to optimize the properties and performance of the currently used Al alloys and/or even design novel Al alloys, the quantitative description of the microstructure during alloys preparation is the key. In recent years, the phase-field simulation coupling with the CALPHAD thermodynamic and atomic mobility databases has become an effective way to quantitatively simulate the microstructure evolution. So far, the accurate thermodynamic database for Al alloys has been established. However, it is not the case for atomic mobility database for Al alloys. The major obstacle lies in the lack of reliable diffusion coefficients in ternary and higher-order Al alloys, and thus there is an urgent need to remedy this situation. In this work, several semi-infinite and finite (thin film) single-phase solid-state diffusion couples in bcc Al-Fe-Mn and fcc Al-Cu-Ni alloys were first prepared. The concentration profiles for all the diffusion couples were then measured by means of EPMA. After that, the pragmatic numerical inverse method, which has been recently developed for high-throughput determination of the interdiffusion coeffi cients in ternary system and validated in several systems, was employed to compute the composition-dependent interdiffusivities in the corresponding systems at 1273 K. In order to eliminate the possibility that different interdiffusivities at the same composition would be obtained from different sets of diffusion couples, only one set of adjustable parameters was used for one system. All the obtained interdiffusivities satisfy the thermodynamic constrains. On the basis of the determined interdiffusivities as well as Fick's second law, all the experimental concentration profiles were reproduced nicely via numerical simulation, which verifies the reliability of the determined interdiffusivities. The further analysis indicates that the pragmatic numerical inverse method can not only realize the determination of reliable composition-dependent interdiffusion coefficients in ternary diffusion couples, but also cover the cases which cannot be dealt with by the traditional Matano-Kirkaldy method, such as the diffusion couples without intersection along their diffusion paths, and the finite (thin film) diffusion couples. In addition, the comparison between the interdiffusivities from semi-infinite diffusion couples and those from finite (thin film) diffusion couples was made, and the probable reason for their difference was also pointed out. All the presently obtained interdiffusivities in bcc Al-Fe-Mn and fcc Al-Cu-Ni alloys will be utilized to develop the accurate atomic mobility databases in ternary Al-Fe-Mn and Al-Cu-Ni systems in the next step.

Key wordsAl alloy    diffusion    interdiffusion coefficient    numerical inverse method
收稿日期: 2015-10-21     
基金资助:* 国家自然科学基金项目51301208和51474239,湖南省自然科学基金项目2015JJ3146, 以及中南大学粉末冶金国家重点实验室项目资助
Sample No. Atomic fraction / % TA / K tA / h
C1 Fe-23.0Al-2.9Mn/Fe-12.6Al-13.8Mn 1273 48
C2 Fe-20.0Al-11.2Mn/Fe-19.1Al-1.4Mn 1273 49
K1 Cu-6.5Al-11.7Ni/Cu-2.5Al-10.1Ni 1273 48
K2 Cu-0.2Ni/Cu-1.2Al-21.9Ni 1273 48
K3 Cu-9.5Al/Cu-10.4Ni 1273 32
表1  bcc结构Al-Fe-Mn合金及fcc结构Al-Cu-Ni合金扩散偶实验条件
图1  bcc结构Al-Fe-Mn扩散偶C1和C2在1273 K的成分-距离曲线
图2  实用型数值回归法计算的bcc结构Al-Fe-Mn合金在1273 K的4个互扩散系数与Al和Mn成分的关系
图3  fcc结构Al-Cu-Ni半无限长扩散偶在1273 K时的扩散路径图
图4  fcc结构Al-Cu-Ni半无限长扩散偶K1和K2在1273 K的成分-距离曲线
图5  实用型数值回归法计算的fcc结构Al-Cu-Ni合金在1273 K的4个互扩散系数与Al和Ni成分的关系
图6  fcc结构Al-Cu-Ni有限长扩散偶K3在1273 K时的成分-距离曲线
图7  实用型数值回归法计算的fcc结构Al-Cu-Ni有限长扩散偶在1273 K的4种互扩散系数与Al和Ni成分的关系
图8  fcc结构Al-Cu-Ni半无限长和有限长扩散偶互扩散系数差值百分比图
[1] Zhang X M, Liu S D.Mater China, 2013; 32(1): 39
[1] (张新明, 刘胜胆. 中国材料进展, 2013; 32(1): 39)
[2] Zhang X M, Deng Y L, Zhang Y.Acta Metall Sin, 2015; 51: 257
[2] (张新明, 邓运来, 张勇. 金属学报, 2015; 51: 257)
[3] Cao D J, Ta N, Du Y, Zhang L J.Mater China, 2015; 34(1): 50
[3] (曹东甲, 塔娜, 杜勇, 张利军.中国材料进展, 2015; 34(1): 50)
[4] Wei M, Tang Y, Zhang L J, Sun W H, Du Y.Metall Mater Trans, 2015; 46A: 3182
[5] Zhang L J, Stratmann M, Du Y, Sundman B, Steinbach I.Acta Mater, 2015; 88: 156
[6] Du Y, Liu S, Zhang L, Xu H, Zhao D, Wang A, Zhou L.Calphad, 2011; 35: 427
[7] Du Y, Zhang L, Cui S, Zhao D, Liu D, Zhang W, Sun W, Jie W.Sci China Technol Sci, 2012; 55: 306
[8] Liu M, Zhang L J, Chen W M, Xin J H, Du Y, Xu H H.Calphad, 2013; 41: 108
[9] Chen J, Zhang C, Wang J, Chen W M, Tang Y, Zhang L J, Du Y.Calphad, 2015; 50: 118
[10] Li J, Chen W, Liu D, Sun W, Zhang L, Du Y, Xu H.J Phase Equilib Diffusion, 2013; 34: 484
[11] Li J, Liu T, Chen W, Wang S, Zhang L, Du Y, Xu H.J Min Metall B-Metall, 2014; 50: 93
[12] Kirkaldy J S, Lane J E, Masson G R.Can J Phys, 1963; 41: 2174
[13] Kirkaldy J S, Young D J.Diffusion in the Condensed State. London: Institute of Metals, 1987: 41
[14] Zhang L, Liu D, Zhang W, Wang S, Tang Y, Ta N, Wei M, Du Y.In: Marthinsen K, Holmedal B, Li Y eds., Material Science Forum, Zurich: Trans Tech Publications, 2014: 611
[15] Kaufman L, ?gren J.Scr Mater, 2014; 70: 3
[16] Olson G B, Kuehmann C J.Scr Mater, 2014; 70: 25
[17] Dayananda M A, Sohn Y H.Metall Mater Trans, 1999; 30A: 535
[18] Zhang D, Morral J E, Brody H D.Mater Sci Eng, 2007; A447: 217
[19] Jaques A V, LaCombe J C.J Phase Equilib Diff, 2012; 33: 181
[20] Paul A.Philos Mag, 2015; 93: 2297
[21] Cheng K, Chen W, Liu D, Zhang L, Du Y.Scr Mater, 2014; 76: 5
[22] Chen W M, Zhang L J, Du Y, Tang C Y, Huang B Y. Scr Mater, 2014; 90-91: 53
[23] Xu H X, Chen W M, Zhang L J, Du Y, Tang C Y.J Alloy Compd, 2015; 644: 687
[24] Liu M. Master Thesis Central South University Changsha, 2014
[24] (柳萌. 中南大学硕士学位论文, 长沙, 2014)
[25] Andersson J O, ?gren J.J Appl Phys, 1992; 72: 1350
[26] Manning J R.Metall Trans, 1970; 1B: 499
[27] Dayananda M A.Metall Trans, 1983; 14A: 1851
[28] Léchelle J, Noyau S, Aufore L, Arredondo A, Audubert F.Diffu Fundam Org, 2012; 17(2): 1
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] 刘路军, 刘政, 刘仁辉, 刘永. Nd90Al10 晶界调控对晶界扩散磁体磁性能和微观结构的影响[J]. 金属学报, 2023, 59(11): 1457-1465.
[6] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[8] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[9] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[10] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[11] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[12] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[13] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[14] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[15] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.