Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 575-582    DOI: 10.11900/0412.1961.2015.00520
  论文 本期目录 | 过刊浏览 |
强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*
钟华,李传军,王江,任忠鸣(),钟云波,玄伟东
上海大学省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072
EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY
Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN(),Yunbo ZHONG,Weidong XUAN
State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China
全文: PDF(1561 KB)   HTML  
摘要: 

研究了强静磁场对定向凝固Al-4.5Cu (质量分数, %)合金微观偏析的影响. 结果表明, 强磁场显著影响了凝固组织中非平衡第二相的形态和数量. 无磁场时, 粗大的第二相为网络状, 连续分布于晶界上; 施加磁场后, 晶界上连续分布的第二相被打断, 其面积分数随磁场强度的增加而减小. 在磁场作用下, 溶质原子的再分配行为发生改变, Cu溶质成分曲线降低, 有效分配系数ke减小. 上述现象主要是由于磁场在熔体中引发热电磁对流以及由热电磁对流驱动的二次流, 在糊状区内产生搅拌, 改变溶质传输行为.

关键词 Al-4.5Cu合金强磁场定向凝固微观偏析有效分配系数热电磁对流    
Abstract

Microsegregation is the unbalanced distribution of alloying element between solid and liquid phases in dendritic scale during solidification. The solute redistribution usually leads to the formation of brittle secondary phase, which is harmful to the workability and final mechanical properties of casting component. It has been accepted that fluid flow plays a critical role in mass transfer during solidification and thus altering the microsegregation pattern. High static magnetic field has been considered as an effective way to control the convection in solidification. In this work, the impact of the high static magnetic field on the microsegregation was investigated. Al-4.5Cu (mass fraction, %) alloy was directionally solidified from <001> seed crystal under various magnetic fields with a constant pulling rate of 50 μm/s and temperature gradient of 101 K/cm. OM and BSE were applied to characterize the microstructure of the solidified samples. The fraction of Al2Cu second phase was obtained by software analysis from the transverse and longitudinal sections. The results show that the Al-4.5Cu alloy solidifies in dendritic morphology. The formation of second phase is significantly affected by the magnetic field. Without magnetic field, the continuous network of second phase is observed at grain boundaries. In the presence of the magnetic field, the second phase is disconnected in the grain boundaries and dispersed in grains. The fraction of the second phase is reduced with the increase of the magnetic field. EDS area scan was carried out to measure the concentration of Cu solute in dendritic scale. Isoconcentration contour maps of Cu in the plane perpendicular to the primary dendrite trunk were drawn. The concentration profiles of Cu were plotted from the measured data and the effective partition coefficient ke was calculated. It is found that the redistribution of Cu solute in interdendritic region is greatly altered by the magnetic field. When the intensity of the magnetic field increases, the concentration profile and the ke decrease. The disturbance of the Cu solute in the plane perpendicular to the primary trunk suggests the existence of fluid flow in the interdendritic region. The above phenomena could be attributed to the dendritic scale thermoelectric magnetic convection (TEMC) as well as the second flow driven by the TEMC. The azimuthal TEMC and meridional second flow will bring about stirring in mushy zone and lead to the modification of solute transport during solidification process.

Key wordsAl-4.5Cu alloy    high magnetic field    directional solidification    microsegregation    effective partition coefficient    thermoelectric magnetic convection
收稿日期: 2015-10-08      出版日期: 2016-03-10
基金资助:*国家重点基础研究发展计划项目 2011CB010404, 国家自然科学基金项目51404148和51401116, 以及上海市科学技术委员会项目13DZ1108200, 13521101102和14521102900资助

引用本文:

钟华,李传军,王江,任忠鸣,钟云波,玄伟东. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*[J]. 金属学报, 2016, 52(5): 575-582.
Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY. Acta Metall, 2016, 52(5): 575-582.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00520      或      http://www.ams.org.cn/CN/Y2016/V52/I5/575

图1  强磁场下Bridgman定向凝固装置示意图
图2  不同磁场强度下定向凝固Al-4.5Cu合金固/液界面附近横纵截面组织
图3  不同磁场强度下定向凝固Al-4.5Cu合金横截面的BSE像
图4  不同磁场强度下定向凝固Al-4.5Cu合金纵截面的BSE像
图5  不同磁场强度下定向凝固Al-4.5Cu合金横纵截面Al2Cu的面积分数
图6  不同磁场强度下定向凝固Al-4.5Cu合金横截面内Cu元素分布的等高线图
图7  不同磁场强度下定向凝固Al-4.5Cu合金固相中Cu元素的成分曲线
图8  不同磁场强度下Cu的有效分配系数ke随固相体积分数的变化
图9  枝晶尺度热电磁对流的产生以及枝晶周围流体流动的示意图
[1] Chalmers B.Principles of Solidification. New York: John Wiley & Sons, 1964: 15
[2] Kurz W, Fisher D J.Fundamentals of Solidification. Aedermannsdorf: Trans Tech Publications, 1986: 13
[3] Fu H Z, Guo J J, Liu L, Li J S.Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 79
[3] (傅恒志, 郭景杰, 刘林, 李金山, 先进材料定向凝固. 北京: 科学出版社, 2008: 79)
[4] Rudolph P, Kakimoto K.MRS Bull, 2009; 34: 251
[5] Davidson P A.Annu Rev Fluid Mech, 1999; 31: 273
[6] Noeppel A, Ciobanas A, Wang X D, Zaidat K, Mangelinck N, Budenkova O, Weiss A, Zimmermann G, Fautrelle Y.Metall Mater Trans, 2010; 41B: 193
[7] Umeda T, Thirathipviwat P, Supradist M, Nagaumi H.Int J Cast Met Res, 2011; 24: 184
[8] Eckert S, Nikrityuk P, Willers B, R?biger D, Shevchenko N, Neumann-Heyme H, Travnikov V, Odenbach S, Voigt A, Eckert K.Euro Phys J Spec Topics, 2013; 220: 123
[9] Flemings M.Metall Trans, 1991; 22A: 957
[10] Xuan W D, Ren Z M, Li C J, Ren W L, Cheng C, Yu Z.Acta Metall Sin, 2012; 48: 629
[10] (玄伟东, 任忠鸣, 李传军, 任维丽, 陈超, 于湛. 金属学报, 2012; 48: 629)
[11] Kaldre I, Fautrelle Y, Etay J, Bojarevics A, Buligins L.J Alloys Compd, 2013; 571: 50
[12] Li X, Du D F, Gagnoud A, Ren Z M, Fautrelle Y, Moreau R.Metall Mater Trans, 2014; 45A: 5584
[13] Guan G, Du D, Fautrelle Y, Moreau R, Ren Z M, Li X.Europhys Lett, 2015; 111: 28004
[14] Shercliff J A. J Fluid Mech, 1979; 91: 231
[15] Jaworski M A, Gray T K, Antonelli M, Kim J J, Lau C Y, Lee M B, Neumann M J, Xu W, Ruzic D N.Phys Rev Lett, 2010; 104: 094503
[16] Lehmann P, Moreau R, Camel D, Bolcato R.Acta Mater, 1998; 46: 4067
[17] Kao A, Pericleous K.In: Ludwig A ed., 13th International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Schladming: IOP Conference Series, 2012; 33: 012045
[18] Yasuda H, Minami Y, Nagira T, Yoshiya M, Uesugi K, Umetani K.J Iron Steel Res Int, 2012; 19: 34
[19] Wang J, Fautrelle Y, Ren Z M, Nguyen-Thi H, Salloum Abou Jaoude G, Reinhart G, Mangelinck-No?l N, Li X, Kaldre I.Appl Phys Lett, 2014; 104: 121916
[20] Tewari S N, Shah R, Song H.Metall Mater Trans, 1994; 25A: 1535
[21] Dold P, Szofran F R, Benz K W.J Cryst Growth, 2006; 291: 1
[22] Ren W L, Lu L, Yuan G, Xuan W, Zhong Y, Yu J, Ren Z M.Mater Lett, 2013; 100: 223
[23] Li X, Gagnoud A, Ren Z M, Fautrelle Y, Debray F.J Mater Res, 2013; 28: 2810
[24] Yang C B, Liu L, Zhao X B, Liu G, Zhang J, Fu H Z.Acta Metall Sin, 2011; 10: 1246
[24] (杨初斌, 刘林, 赵新宝, 刘刚, 张军, 傅恒志. 金属学报, 2011; 10: 1246)
[25] Henry S, Minghetti T, Rappaz M.Acta Mater, 1998; 46: 6431
[26] Ganesan M, Thuinet L, Dye D, Lee P D.Metall Mater Trans, 2007; 38B: 557
[27] Sheil E.Z Metallkd, 1941; 34: 70
[28] Youdelis W V, Colton D R, Cahoon J.Can J Phys, 1964; 42: 2217
[29] Martin J W, Doherty R D, Cantor B.Stability of Microstructure in Metallic Systems. 2nd Ed., Cambridge: Cambridge University Press, 1997: 391
[30] Wang J, Fautrelle Y, Nguyen-Thi H, Reinhart G, Liao H, Zhong Y B, Ren Z M.Metall Mater Trans, 2016; 47A: 1169
[1] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[2] 骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
[3] 刘桐,骆良顺,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*II. Al-53%Y包晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 866-874.
[4] 张京,郑运荣,冯强. 基于蠕变损伤的定向凝固DZ125合金恢复热处理研究*[J]. 金属学报, 2016, 52(6): 717-726.
[5] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[6] 马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成*[J]. 金属学报, 2016, 52(4): 426-436.
[7] 高博,王磊,梁涛沙,刘杨,宋秀,曲敬龙. 定向凝固U720Li合金的高温塑性变形行为*[J]. 金属学报, 2016, 52(4): 437-444.
[8] 杜娇娇,李国建,王强,马永会,王慧敏,李萌萌. 强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*[J]. 金属学报, 2015, 51(7): 799-806.
[9] 丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 冷坩埚定向凝固Ti-47Al-2Cr-2Nb合金的拉伸与高周疲劳性能研究*[J]. 金属学报, 2015, 51(5): 569-579.
[10] 濮晟, 王莉, 谢光, 丁贤飞, 楼琅洪, 冯强. 缺口取向和再结晶对一种定向凝固钴基高温合金热疲劳性能的影响[J]. 金属学报, 2015, 51(4): 449-457.
[11] 钟华, 任忠鸣, 李传军, 钟云波, 玄伟东, 王秋良. 强磁场对Al-4.5Cu合金定向凝固过程中织构和晶界的影响[J]. 金属学报, 2015, 51(4): 473-482.
[12] 唐宁, 王艳丽, 许庆彦, 赵希宏, 柳百成. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51(4): 499-512.
[13] 马德新. 高温合金叶片单晶凝固技术的新发展[J]. 金属学报, 2015, 51(10): 1179-1190.
[14] 闫学伟,唐宁,刘孝福,税国彦,许庆彦,柳百成. 镍基高温合金铸件液态金属冷却定向凝固建模仿真及工艺规律研究[J]. 金属学报, 2015, 51(10): 1288-1296.
[15] 肖旋, 曾超, 侯介山, 秦学智, 郭建亭, 周兰章. 定向凝固DZ444镍基高温合金初生MC碳化物的分解行为[J]. 金属学报, 2014, 50(9): 1031-1038.