Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 561-566    DOI: 10.11900/0412.1961.2015.00517
  论文 本期目录 | 过刊浏览 |
Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*
李维丹,谭晓华,任科智,刘洁,徐晖
上海大学材料科学与工程学院材料研究所, 上海 200072
MAGNETIC VISCOSITY BEHAVIOR AND EXCHANGE INTERACTION FOR Nd2Fe14B/α-Fe NANOCOMPOSITE PERMANENT ALLOYS
Weidan LI,Xiaohua TAN,Kezhi REN,Jie LIU,Hui XU
Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
全文: PDF(747 KB)   HTML  
摘要: 

利用扫描速率法研究纳米晶复合永磁合金Nd8.5Fe76Co5Zr3B6.5Dy1, Nd9.5Fe75Co5Zr3B6.5Nb1和Nd9.5Fe75.4Co5Zr3B6.5Ga0.6的磁黏滞行为, 计算了合金的扰动场及磁交换长度, 分析了其交互作用、微观结构和磁性能之间的关系. 结果表明, 3种合金的扰动场分别为4.80, 4.87和5.09 kA/m; 磁交换长度差别不大, 分别为4.53, 4.41和4.20 nm. Nd9.5Fe75Co5Zr3B6.5Nb1合金的交互作用最强, 主要是因为合金中的晶粒尺寸细小(约为15 nm)且分布均匀. 3种合金均呈单一的硬磁特征, 其中Nd9.5Fe75.4Co5Zr3B6.5Ga0.6合金磁化反转的一致性最好, 使得其剩磁较高, 最大磁能积较大.

关键词 纳米晶复合永磁合金磁黏滞交互作用微观结构    
Abstract

A well known feature of ferromagnetic materials is the time dependent behavior of the magnetic polarization, i.e. magnetic viscosity, which arises from thermal activation over energy barriers. It is found that magnetic parameters, such as the fluctuation field (Hf) and the exchange interaction length (lex), have a close relationship with the microstructure of the materials. Therefore, investigation on magnetic viscosity is helpful to understand the coercivity mechanism of ferromagnetic materials. In this work, ingots with nominal composition Nd8.5Fe76Co5Zr3B6.5Dy1, Nd9.5Fe75Co5Zr3B6.5Nb1 and Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 were prepared by arc-melting pure metals Nd, Fe, Co, Zr, Dy, Nb, Ga and Fe-B alloy in an argon atmosphere. A small portion of an ingot weighing about 5 g was re-melted in a quartz nozzle and ejected onto a rotating copper wheel in a range of 10~30 m/s. The annealing treatment was carried out at 690~710 ℃ for 4~5 min. Vibrating sample magnetometer (VSM), XRD and TEM were used to study magnetic viscosity behavior and exchange interaction for Nd2Fe14B/α-Fe nanocomposite permanent alloys. Furthermore, the relationship among exchange interaction, microstructure and magnetic property was discussed. For the nanocomposite Nd8.5Fe76Co5Zr3B6.5Dy1, Nd9.5Fe75Co5Zr3B6.5Nb1 and Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloys, Hf and lex were obtaind by sweep rate measurement. The Hf were 4.80, 4.87 and 5.09 kA/m, and lex were 4.53, 4.41 and 4.20 nm for permanent Nd8.5Fe76Co5Zr3B6.5Dy1, Nd9.5Fe75Co5Zr3B6.5Nb1 and Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloys, respectively. It suggested that the lex had a minor change. The Nd9.5Fe75Co5Zr3B6.5Nb1 alloy had the strongest exchange interaction among three alloys in this work. It is due to a refined microstructure and uniform distribution of grains. Furthermore, the behavior of the irreversible susceptibility (χirr) as a function of applied magnetic field (H) was investigated. A single sharp peak could be seen near coercive field in the χirr-H curve in three alloys, suggesting that the magnetization reversal was a uniform reversal process. The Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy exhibited a sharper and narrower peak, indicating a more rapid change in magnetization and a strong interaction between adjacent magnetic phases. Since exchange interaction of neighboring grains favors the nucleation of reversed domains, remanence enhancement is generally achieved at the expense of coercivity. Among three alloys, Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 alloy showed the optimum magnetic properties, that is, the coercivity Hc=687.56 kA/m, the remanence Br=0.92 T, the maximum magnetic energy product (BH)max=120.88 kJ/m3. It was mainly due to consisting of well-coupled grains with near perfect alignment of the easy magnetization direction, which improved the remanence and maximum energy product.

Key wordsnanocomposite permanent alloy    magnetic viscosity    exchange interaction    microstructure
收稿日期: 2015-10-08      出版日期: 2016-02-29
基金资助:* 国家自然科学基金项目51171101和51471101资助

引用本文:

李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
Weidan LI,Xiaohua TAN,Kezhi REN,Jie LIU,Hui XU. MAGNETIC VISCOSITY BEHAVIOR AND EXCHANGE INTERACTION FOR Nd2Fe14B/α-Fe NANOCOMPOSITE PERMANENT ALLOYS. Acta Metall, 2016, 52(5): 561-566.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00517      或      http://www.ams.org.cn/CN/Y2016/V52/I5/561

Alloy Abbreviation Wheel speed / (ms-1) Annealing temperature / ℃ Time / min
Nd8.5Fe76Co5Zr3B6.5Dy1 Dy1 15 690 5
Nd9.5Fe75Co5Zr3B6.5Nb1 Nb1 22 710 4
Nd9.5Fe75.4Co5Zr3B6.5Ga0.6 Ga0.6 18 710 5
表1  实验用纳米晶复合永磁合金的编号缩写、快淬速率及最佳热处理条件
图1  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的XRD谱
图2  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的退磁曲线
Alloy Hc / (kAm-1) Br / T (BH)max / (kJm-3) Hf / (kAm-1) lex / nm Average grain size / nm
Dy1 872.45 0.73 88.18 4.80 4.53 18
Nb1 759.86 0.82 110.92 4.87 4.41 15
Ga0.6 687.56 0.92 120.88 5.09 4.20 40
表2  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的磁性能参数、扰动场Hf、磁交换长度lex和平均晶粒尺寸
图3  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的直流退磁的剩余磁化强度和等温剩余磁化强度之间的差值(δM)随外加磁场(H)的变化曲线
图4  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的矫顽力(Hc)同扫描速率(r)对数的关系曲线
图5  3种纳米晶复合永磁合金的TEM明场像
图6  纳米晶复合永磁合金Dy1, Nb1和Ga0.6的不可逆磁化率(χirr)随外加磁场(H)的变化曲线
[1] Coehoorn R, De Mooij D B, Duchateau J P W B, Buschow K H J.J Phys, 1988; 49: 669
[2] Skomski R, Coey J M D.Phys Rev, 1993; 48B: 15812
[3] Schrefl T, Fidler J, Kronmuller H.Phys Rev, 1994; 49B: 6100
[4] Street R, Brown S D.J Appl Phys, 1994; 76: 6386
[5] Crew D C, McCormick P G, Street R.J Phys, 1996; 29D: 2313
[6] Tomka G J, Bissell P R, O'Grady K, Chantrell R W. IEEE Trans Magn, 1990; 26: 2655
[7] Givord D, Lienard A, Tenaud P, Viadieu T.J Magn Magn Mater, 1987; 67: 2 81
[8] Singleton E W, Hadjipanayis G C.J Appl Phys, 1990; 67: 4759
[9] Ferguson G B, O'Grady K, Popplewell J, Chantrella R W.J Appl Phys, 1991; 69: 5495
[10] Cornejo D R, Villas-Boas V, Missell F P.J Appl Phys, 1998; 83: 6637
[11] Lobue M, Basso V, Beatrice G, Bertotti C, Durin G, Sasso C P. J Magn Magn Mater, 2005; 290~291: 1184
[12] Collocott S J, Dunlop J B.J Magn Magn Mater, 2008; 320: 2089
[13] Zhang H W, Zhang W Y, Yan E R, Shen B G.Acta Phys Sin, 1999; 48: 211
[13] (张宏伟, 张文勇, 阎阿儒, 沈保根. 物理学报, 1999; 48: 211)
[14] Chen B C, Liu X M, Chen R J.J Alloys Compd, 2012; 516: 73
[15] Chen Y Z, He S L, Zhang H W, Chen R J, Rong C B, Sun J R.Acta Phys Sin, 2005; 54: 5890
[15] (陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣. 物理学报, 2005; 54: 5890)
[16] Garcia-Otero J, Porto M, Rivas J.J Appl Phys, 2000; 87: 7376
[17] Bruno P, Bayreuther G, Beauvillain P, Chappert C, Lugert G, Renard D, Renard J P, Seiden J.J Appl Phys, 1990; 68: 5759
[18] Collocott S J.J Magn Magn Mater, 2011; 323: 2023
[19] Jahn L, Schumann R, Rodewald W.J Magn Magn Mater, 1996; 153: 302
[20] El-hilo M, O'Grady K, Chantrell R W.J Magn Magn Mater, 2002; 248: 360
[21] Skomski R, Coey J M D. Permanent Magnetism. Bristol: Institute of Physics Publishing, 1999: 159
[22] Fischer R, Schreel T, Kronmuller H, Fidler J.J Magn Magn Mater, 1996; 153: 35
[23] Breaux G A, Benirschke R C, Sugai T, Kinnear B S, Jarrold M F.Phys Rev Lett, 2003; 91: 215508
[24] Ping D H, Hono K, Hirosawa S.J Appl Phys, 1998; 83: 7699
[25] Cui B Z, Sun X K, Liu W, Zhang Z D, Geng D Y, Zhao X G.J Phys, 2000; 33D: 338
[26] Zhang S Y, Xu H, Tan X H, Ni J S, Hou X L, Dong Y D.J Alloys Compd, 2008; 459: 41
[1] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[2] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[3] 乔岩欣,王硕,刘彬,郑玉贵,李花兵,姜周华. 新型高氮钢的腐蚀和空蚀交互作用研究*[J]. 金属学报, 2016, 52(2): 233-240.
[4] 申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
[5] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[6] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[7] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[8] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[9] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[10] 余龙, 宋西平, 张敏, 李宏良, 焦泽辉, 于慧臣. 高铌TiAl合金在疲劳蠕变作用下的裂纹萌生及扩展[J]. 金属学报, 2014, 50(10): 1253-1259.
[11] 平德海,殷匠,刘文庆,宿彦京,戎利建,赵新青. 低合金马氏体钢中的ω[J]. 金属学报, 2013, 49(7): 769-774.
[12] 向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
[13] 时惠英 龙艳妮 蒋百灵 陈迪春. 打底层对铝合金表面GLC镀层组织和摩擦学特性的影响[J]. 金属学报, 2012, 48(8): 983-988.
[14] 杨沐鑫 杨钢 刘正东 杜习乾 黄崇湘. 等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能[J]. 金属学报, 2012, 48(12): 1422-1430.
[15] 王冠 林晓群. 冷加工对含Mn铝合金管腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 361-366.