Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 491-496    DOI: 10.11900/0412.1961.2015.00503
  论文 本期目录 | 过刊浏览 |
纳米孪晶Cu中局部剪切应变诱导的退孪生行为*
白敬胜,卢秋虹,卢磊()
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
DETWINNING BEHAVIOR INDUCED BY LOCAL SHEAR STRAIN IN NANOTWINNED Cu
Jingsheng BAI,Qiuhong LU,Lei LU()
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

白敬胜,卢秋虹,卢磊. 纳米孪晶Cu中局部剪切应变诱导的退孪生行为*[J]. 金属学报, 2016, 52(4): 491-496.
Jingsheng BAI, Qiuhong LU, Lei LU. DETWINNING BEHAVIOR INDUCED BY LOCAL SHEAR STRAIN IN NANOTWINNED Cu[J]. Acta Metall Sin, 2016, 52(4): 491-496.

全文: PDF(994 KB)   HTML
  
摘要: 

对择优取向纳米孪晶结构Cu样品进行室温轧制变形. 微观结构研究发现, 当变形压下量为15%时, 样品中出现了与轧制方向呈30o~45°方向(最大剪切应力方向)分布的退孪生带. 退孪生带中孪晶片层明显粗化, 孪晶界上出现大量Shockley位错. 塑性变形过程中较小应变时, 纳米孪晶Cu中局部退孪生机制是协调局部剪切应变的主要机制.

关键词 Cu纳米孪晶轧制形变退孪生剪切应变    
Abstract

Nanotwinned materials have attracted widespread attention due to their superior mechanical properties, such as high strength, good ductility and work hardening. Experimental and molecular dynamics (MD) simulation results had indicated that there are three distinctly different dislocation-mediated deformation mechanisms in nanotwinned metals, namely dislocation pile-up against and slip transfer across twin boundaries (TBs), Shockley partials gliding on twin boundaries leading to twin boundary migration, and threading dislocations slip confined by neighboring twin boundaries. However, most of the previous studies are focused on the homogenous plastic deformation under tension and compression tests, the non-homogenous deformation and its deformation mechanism, especially under low strain and complex stress condition/confined condition, of nanotwinned metals are still not explored so far. In this study, the electrodeposited bulk Cu samples with preferentially oriented nanotwins were cold rolled with the normal of the rolling plane parallel to the growth direction (ND//GD) to strain of 15% at room temperature. The microstructure features of as-rolled Cu were investigated by SEM and TEM. Microstructure evolution indicates that many detwinning bands appeared in the direction about 30°~45° with respect to the rolling direction, which is the direction with the largest shearing stress. The twin lamellae in the detwinning bands coarsened obviously. Based on calculation of the local shear strain and strain gradient of TBs in a selected detwinning band, it indicates that the maximum shear strain occurs in the middle of the deformation bands, and its detwinning mechanism is directly related the localized shear strains (γ). The twin lamellae in the detwinning bands were coarsened obviously. When 0.3<γ<0.8, the detwinning process via producing amount of Shockley dislocations on twin boundaries dominates the deformation. After detwinning, Shockley partial dislocations stored at the area with the maximum strain gradient and formed incoherent twin boundaries (ITBs). The present investigation indicates detwinning process dominates the plastic deformation and sustains the local shearing strain in nanotwinned Cu at small strains under cold rolling.

Key wordsCu    nanoscale twin    cold rolling    detwinning    shear strain
收稿日期: 2015-09-30     
基金资助:*国家重点基础研究发展计划项目2012CB932202, 以及国家自然科学基金项目51420105001, 51371171和 51471172 资助
图1  沉积态择优取向纳米孪晶Cu样品形貌的SEM和TEM明场像及SAED花样
图2  压下量为15%的冷轧纳米孪晶Cu样品纵截面的SEM像
图3  冷轧纳米孪晶Cu样品中退孪生带的TEM像和相应的SAED花样, 沉积态样品及变形产生的退孪生带中孪晶片层厚度分布图
图4  图3a中方框区域的放大图及该区域中孪晶界的形貌示意图, 计算剪切应变的几何示意图以及虚线标出的孪晶界上的剪切应变和剪切应变梯度的分布
图5  退孪生过程示意图
[1] Lu L, Shen Y F, Chen X H, Qian L H, Lu K.Science, 2004; 304: 422
[2] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K.Scr Mater, 2005; 52: 989
[3] Zhang X, Misra A, Wang H, Nastasi M, Embury J D, Mitchell T E, Hoagland R G, Hirth J P.Appl Phys Lett, 2004; 84: 1096
[4] Zhang X, Wang H, Chen X H, Lu L, Lu K, Hoagland R G, Misra A.Appl Phys Lett, 2006; 88: 173116
[5] Zhu Y T, Wu X L, Liao X Z, Narayan J, Kecskes L J, Mathaudhu S N.Acta Mater, 2011; 59: 812
[6] Lu L, Chen X, Huang X, Lu K.Science, 2009; 323: 607
[7] You Z S, Lu L, Lu K.Acta Mater, 2011; 59: 6927
[8] Chen X H, Lu L, Lu K.Scr Mater, 2011; 64: 311
[9] Lu Q H, Sui M L, Huang X X, Li D X, Hansen N.Philos Mag, 2014; 94: 2262
[10] Jang D C, Li X Y, Gao H J, Greer J R.Nat Nanotechnol, 2012; 7: 594
[11] You Z S, Li X Y, Gui L J, Lu Q H, Zhu T, Gao H J, Lu L.Acta Mater, 2013; 61: 217
[12] Ye J C, Wang Y M, Barbee T W, Hamza A V.Appl Phys Lett, 2012; 100: 261912
[13] Choi I C, Kim Y J, Wang Y M, Ramamurty U, Jang J I.Acta Mater, 2013; 61: 7313
[14] Li X, Wei Y, Lu L, Lu K, Gao H.Nature, 2010; 464: 877
[15] Shabib I, Miller R E.Acta Mater, 2009; 57: 4364
[16] Li N, Wang J, Zhang X, Misra A.JOM, 2011; 63(9): 62
[17] Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J Y, Hirth J P.Acta Mater, 2010; 58: 2262
[18] Liu Y, Jian J, Chen Y, Wang H, Zhang X.Appl Phys Lett, 2014; 104: 231910
[19] Hong C S, Tao N R, Huang X, Lu K.Acta Mater, 2010; 58: 3103
[20] Ni S, Wang Y B, Liao X Z, Li H Q, Figueiredo R B, Ringer S P, Langdon T G, Zhu Y T.Phys Rev, 2011; 84B: 235401
[21] You Z S, Lu L, Lu K.Scr Mater, 2010; 62: 415
[22] Jin S, Pan Q S, Lu L.Acta Metall Sin, 2013; 49: 635
[22] (金帅, 潘庆松, 卢磊. 金属学报, 2013; 49: 635)
[23] Duggan B J, Hatherly M, Hutchinson W B, Wakefield P T.Met Sci, 1978; 12: 343
[24] Hatherly M, Malin A S.Scr Metall, 1984; 18: 449
[25] Ashby M F.Philos Mag, 1970; 21: 399
[26] Fleck N A, Muller G M, Ashby M F, Hutchinson J W.Acta Metall Mater, 1994; 42: 475
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[7] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[9] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[12] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[13] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
[14] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[15] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.