Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 727-733    DOI: 10.11900/0412.1961.2015.00493
  论文 本期目录 | 过刊浏览 |
Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*
楼白杨(),王宇星
浙江工业大学材料科学与工程学院, 杭州 310014
EFFECTS OF Mo CONTENT ON THE MICRO-STRUCTURE AND TRIBOLOGICAL PROPERTIES OF CrMoAlN FILMS
Baiyang LOU(),Yuxing WANG
Faculty of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
全文: PDF(857 KB)   HTML  
  
摘要: 

采用非平衡磁控溅射离子镀技术在M2工具钢和单晶Si表面沉积多元CrMoAlN纳米多层薄膜. 利用EDS, SEM, XRD, XPS, 纳米压痕仪和销盘磨损试验仪研究Mo含量对CrMoAlN薄膜成分、表面和截面形貌、相结构、化学价态、显微硬度和摩擦性能的影响. 结果表明, 不同Mo含量的CrMoAlN薄膜均为fcc结构, Mo代替了CrAlN晶格中部分Cr或Al的位置, 形成了以fcc-CrN相为基础的CrMoAlN置换固溶体. 随着Mo含量提高, CrMoAlN薄膜表面颗粒尺寸明显减小, 截面柱状晶结构逐渐消失. CrMoAlN薄膜的显微硬度和弹性模量随着Mo含量的增加而提高, 摩擦系数和磨损率随着Mo含量的提高而降低. Mo含量为19.47% (原子分数)时, 显微硬度与弹性模量均达到最大值29.70 GPa和427.53 GPa, 摩擦系数和磨损率达到最小值0.271和1.2×10-16 m3/(Nm).

关键词 CrMoAlN纳米多层薄膜磁控溅射微观结构摩擦磨损性能    
Abstract

In recent decades, CrAlN coatings have been widely used for cutting tools due to their high hardness, good wear resistance, especially excellent thermal stability and oxidation resistance. However, the rapid development in high speeds and dry cutting applications demands further improvement in hardness and wear properties of CrAlN coatings. Mo nitrides coatings are commonly used as protective surface layers against wear and corrosion. The combination of CrAlN and Mo may lead to the development of new composite coatings with superior wear properties. In this study, the CrMoAlN multilayer coatings with different Mo contents were deposited on M2 tool steel and silicon wafers substrates by closed-field unbalanced magnetron sputtering ion plating (CFUMSIP) technique in a gas mixture of Ar+N2. The chemical composition, surface and cross sectional morphologies, microstructure, mechanical and tribological properties of coatings were studied by EDS, SEM, XRD, XPS, nano-indentation and pin-on-disk tribometer, respectively. The results indicate that the CrMoAlN coatings exhibit fcc structure. Mo atoms substitute Cr and/or Al atoms in CrAlN lattice forming the solid solution CrMoAlN coatings. The surface and cross-sectional morphologies of the CrMoAlN coatings show that the grain size and the column width decrease with the increasing of Mo content. Nano-indentation result reveals a promoted hardness and elastic modulus of the CrMoAlN coatings with enhanced Mo content from 0 to 19.47% (atomic fraction) due to the solid solution strengthening and grain size diminishment. A maximum hardness and elastic modulus of the coatings are found to be 29.70 GPa and 427.53 GPa when the Mo content reached to 19.47%. The average friction coefficient and wear rate were observed to decrease with the increase of Mo content and the lowest values were 0.271 and 1.2×10-16 m3/(Nm), respectively, at 19.47%Mo.

Key wordsCrMoAlN nano-multilayer coating    magnetron sputtering    microstructure    tribological property
收稿日期: 2015-09-21      出版日期: 2016-03-21
基金资助:* 浙江省自然科学基金资助项目Y15E050060

引用本文:

楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
Baiyang LOU,Yuxing WANG. EFFECTS OF Mo CONTENT ON THE MICRO-STRUCTURE AND TRIBOLOGICAL PROPERTIES OF CrMoAlN FILMS. Acta Metall, 2016, 52(6): 727-733.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00493      或      http://www.ams.org.cn/CN/Y2016/V52/I6/727

图1  不同Mo含量CrMoAlN薄膜的XRD谱
图2  不同Mo含量的CrMoAlN薄膜的表面形貌
Coating Mo target current
A
Atomic fraction / % Thickness
μm
Deposition rate
nms-1
Cr Mo Al N
CrAlN 0 44.97 0 5.16 49.87 2.121 0.29
CrAlN-2Mo 2 39.93 7.94 5.59 46.54 2.467 0.34
CrAlN-4Mo 4 35.12 16.05 4.28 44.55 2.629 0.37
CrAlN-6Mo 6 32.63 19.47 3.25 44.65 2.742 0.38
表1  不同Mo含量CrMoAlN薄膜各元素原子分数、厚度和沉积速率
图3  不同Mo含量的CrMoAlN薄膜的截面形貌
图4  CrMoAlN薄膜的XPS分析结果
图5  不同Mo含量的CrMoAlN薄膜硬度和弹性模量随压入深度变化曲线
图6  不同Mo含量的CrMoAlN薄膜室温摩擦曲线
Coating H / GPa E / GPa H3/E2 Friction
coefficient
Wear rate
10-16 m3N-1m-1
CrAlN 21.71 318.72 0.101 0.307 2.0
CrAlN-2Mo 23.14 340.13 0.107 0.298 1.5
CrAlN-4Mo 25.72 380.65 0.120 0.291 1.3
CrAlN-6Mo 29.70 427.53 0.143 0.271 1.2
表2  不同Mo含量CrMoAlN薄膜的纳米硬度H, 弹性模量E, H3/E2, 摩擦系数和磨损率
图7  不同Mo含量的CrMoAlN薄膜磨痕表面形貌
[1] Conde A, Navas C, Cristobal A B, Housden J, Damborenea J.Surf Coat Technol, 2006; 201: 2690
[2] Barshilia H C, Selvakumar N, Deepthi B, Rajam K S.Surf Coat Technol, 2006; 201: 2193
[3] Cheng Y H, Browne T, Heckerman B.Wear, 2011; 271: 775
[4] Lin J L, Zhang N Y, Sproul W D, Moore J J.Surf Coat Technol, 2012; 206: 3283
[5] Lorenzo-Martin C, Ajayi O, Erdemir A, Fenske G R, Wei R.Wear, 2013; 302: 963
[6] Mo J L, Zhu M H, Leyland A, Matthews A.Surf Coat Technol, 2013; 215: 170
[7] Romero J, Gómez M A, Esteve J.Thin Solid Films, 2006; 515: 113
[8] Wo P C, Munroe P, Jiang Z T, Zhou Z F, Li K Y, Xie Z H.Mater Sci Eng, 2014; A596: 264
[9] Lin J L, Wang B, Ou Y X.Surf Coat Technol, 2013; 216: 251
[10] Rapoport L, Moshkovich A, Perfilyev V.Surf Coat Technol, 2014; 238: 207
[11] Banakh O, Schmid P E, Sanjines R, Levy F.Surf Coat Technol, 2003; 163: 57
[12] Wang L P, Zhang G A, Wood R J K, Wang S C, Xue Q J.Surf Coat Technol, 2010; 204: 3517
[13] Li T P, Zhou Y C, Li M S.Surf Coat Technol, 2008; 202: 1985
[14] Tam P L, Zhou Z F, Shum P W.Thin Solid Films, 2008; 516: 5725
[15] Yang Q, Zhao L R, Cai F, Yang S, Teer D G.Surf Coat Technol, 2008; 202: 3886
[16] Yang S C, Li X Y, Cooke K E.Appl Surf Sci, 2012; 258: 2062
[17] Qi D L, Lei H, Fan D.Acta Metall Sin, 2015; 51: 371
[17] (齐东丽, 雷浩, 范迪. 金属学报, 2015; 51: 371)
[18] Yang Q, Zhao L R, Patnaik P C, Zeng X T.Wear, 2006; 261: 119
[19] Yang K, Xian G, Zhao H B, Fan H Y, Wang J, Wang H, Du H.Int J Refract Met Hard Mater, 2015; 52: 261
[20] Qi D L, Lei H, Wang T G, Pei Z L, Gong J, Sun C.J Mater Sci Technol, 2015; 31: 55
[21] Chang S Y, Kim K H, Kwon S H, Park I W.J Korean Phys Soc, 2009; 54: 1237
[22] Qi Z B, Wu Z T, Wang Z C.Surf Coat Technol, 2014; 259: 146
[23] Cheng W L, Zhou Z F, Shum P W.Surf Coat Technol, 2013; 229: 84
[24] Kim K H, Choi E Y, Hong S G, Park B G, Yoon J H, Yong J H.Surf Coat Technol, 2006; 201: 4068
[25] Musil J, Kunc F, Zeman H, Polakova H.Surf Coat Technol, 2002; 154: 304
[26] Xu J H, Ju H B, Yu L H.Acta Metall Sin, 2012; 48: 1132
[26] (许俊华, 鞠洪博, 喻利花. 金属学报, 2012; 48: 1132)
[1] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[2] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
[3] 李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
[4] 申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
[5] 吴法宇,李建伟,齐羿,丁梧桐,樊子铭,周艳文. 粉末靶射频磁控溅射非晶Al2O3薄膜的制备与性能研究*[J]. 金属学报, 2016, 52(12): 1595-1600.
[6] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[7] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[8] 杨超,蒋百灵,冯林,郝娟. 靶面放电特性对沉积粒子离化率及沉积行为的影响*[J]. 金属学报, 2015, 51(12): 1523-1530.
[9] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[10] 马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.
[11] 马玉田,刘俊标,霍荣岭,韩立,牛耕. 基于磁控溅射法显微CT W-Al透射靶材的制备及其性能研究*[J]. 金属学报, 2015, 51(11): 1416-1424.
[12] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[13] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[14] 李小婵, 柯培玲, 刘新才, 汪爱英. 复合高功率脉冲磁控溅射Ti的放电特性及薄膜制备*[J]. 金属学报, 2014, 50(7): 879-885.
[15] 王振玉, 徐胜, 张栋, 刘新才, 柯培玲, 汪爱英. N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响*[J]. 金属学报, 2014, 50(5): 540-546.