Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 538-548    DOI: 10.11900/0412.1961.2015.00456
  论文 本期目录 | 过刊浏览 |
Re和W对铸态镍基单晶高温合金再结晶的影响*
濮晟1,2,谢光2,3(),王莉2,3,潘智毅3,4,楼琅洪2
1 北京科技大学新金属材料国家重点实验室, 北京 100083
2 中国科学院金属研究所, 沈阳 110016
3 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
4 清华大学深圳研究生院, 深圳 518055
EFFECT OF Re AND W ON RECRYSTALLIZATION OF AS-CAST Ni-BASED SINGLE CRYSTAL SUPERALLOYS
Sheng PU1,2,Guang XIE2,3(),Li WANG2,3,Zhiyi PAN3,4,Langhong LOU2
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4 Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
全文: PDF(1916 KB)   HTML  
摘要: 

对不同Re和W含量的铸态镍基单晶高温合金通过Brinell硬度计压痕变形, 分别在1230~1330 ℃保温1 h, 研究了难熔元素Re和W对合金再结晶行为的影响. 结果表明, 再结晶晶粒在压痕表面形成, 并沿枝晶干向内扩展, 晶界迁移受到枝晶间粗大γ'相和γ +γ'共晶阻碍. 添加Re和W提高了铸态单晶高温合金的γ'相溶解温度和γ +γ'共晶含量, 导致单晶高温合金的再结晶温度升高. 热处理温度升高, 各单晶高温合金的再结晶面积随着枝晶间γ'相和共晶含量的减少而增大. 相同热处理温度下, 由于不同成分单晶高温合金枝晶间粗大γ'相和γ +γ'共晶含量不同, 不含难熔元素Re和W的单晶高温合金再结晶面积最大, 含Re单晶高温合金的再结晶面积大于含W单晶高温合金, 同时添加Re和W的单晶高温合金再结晶面积最小.

关键词 镍基单晶高温合金再结晶共晶ReW    
Abstract

Ni-based single crystal (SX) superalloys have been used as blades in aero-space industry and land-based applications due to their excellent high-temperature properties. However, residual strain is introduced into as-cast SX superalloy blades during the manufacturing process, such as casting, grinding or shot peening, and so on. Recrystallization (RX) occurs easily during subsequent high temperature heat treatment. In previous work, it is believed that RX has detrimental effect on the mechanical properties of SX superalloy. Furthermore, in order to improve the mechanical properties, more and more refractory elements, such as W, Re, Mo, Ta, are added into SX superalloys. However, so far, few reports about the effect of refractory elements on the RX in as-cast SX superalloys have been available. In the present work, the effect of Re and W on the RX behavior of as-cast Ni-based SX superalloy was studied. Single crystal superalloys with different Re and W contents were annealed at 1230~1330 ℃ after indened using Brinell hardnesstester. It is found that RX grains form at the surface under indentation and grow preferentially along the dendritic cores. Subsequent growth of RX is impeded by the residual coarse γ' and γ +γ' eutectics in the interdendritic regions. Both the volume fraction of γ +γ' eutectics and γ' solvus temperature are increased with the addition of Re and W, which are attributed to the increase of RX threshold temperature. For all SX superalloys studied in this work, RX area increases with the increase of annealing temperature due to the dissolution of γ' and γ+γ' eutectics. At the same annealing temperature, in comparison to Re, W shows more effect to inhibit RX growth. Additionally, SX superalloy containing both Re and W has the smallest RX area in the present experiments.

Key wordsNi-based single crystal superalloy    recrystallization    eutectic    Re    W
收稿日期: 2015-08-26      出版日期: 2016-05-25
基金资助:* 国家自然科学基金项目50901079, 国家重点基础研究发展计划项目2010CB631201及国家高技术研究发展计划项目2012AA03A513资助

引用本文:

濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
Sheng PU,Guang XIE,Li WANG,Zhiyi PAN,Langhong LOU. EFFECT OF Re AND W ON RECRYSTALLIZATION OF AS-CAST Ni-BASED SINGLE CRYSTAL SUPERALLOYS. Acta Metall, 2016, 52(5): 538-548.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00456      或      http://www.ams.org.cn/CN/Y2016/V52/I5/538

Alloy Cr+Co+Mo Ta+Al W Re Ni
DD00 13 13 - - Bal.
DD04R 13 13 - 4 Bal.
DD06W 13 13 6 - Bal.
DD0WR 13 13 6 4 Bal.
表1  镍基单晶高温合金的名义化学成分
图1  DD06W合金经1250 ℃, 1 h热处理后枝晶间组织的SEM像
图2  铸态DD0WR合金枝晶组织的OM像
图3  4种镍基单晶高温合金的γ+γ'共晶组织的SEM像
Alloy γ' solves Incipient melting
temperature / ℃ temperature / ℃
DD00 1232 -
DD04R 1256 -
DD06W 1263 1362
DD0WR 1278 1358
表2  4种镍基单晶合金的γ'相溶解温度和初熔温度
图4  4种镍基单晶高温合金压痕后的再结晶温度
图5  4种镍基单晶高温合金压痕后在不同温度热处理1 h的初始再结晶形貌
图6  镍基单晶高温合金在不同热处理温度下的再结晶面积
图7  DD00合金压痕后经1280和1300 ℃热处理1 h再结晶组织的OM和SEM像
图8  DD04R合金压痕后在1290, 1300和1310 ℃热处理1 h再结晶组织的OM和SEM像
图9  DD06W和DD0WR合金压痕后经1310, 1320和1330 ℃热处理1 h再结晶组织的OM像
图10  DD0WR合金压痕后在1330 ℃热处理1 h γ+γ'共晶阻碍再结晶晶界迁移的OM和SEM像
图11  镍基单晶高温合金再结晶面积随枝晶间γ'相和γ +γ'共晶含量的变化
图12  镍基单晶高温合金在不同热处理温度的枝晶间γ'相体积分数
[1] Reed R C.The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 121
[2] Panwisawas C, Mathur H, Gebelin J, Putman D, Rae C M F, Reed R C.Acta Mater, 2013; 61: 51
[3] Xie G, Wang L, Zhang J, Lou L H.Metall Mater Trans, 2008; 39A: 206
[4] Khan T, Caron P, Nakagawa Y G.J Met, 1986; 38(7): 16
[5] Jo C Y, Cho H Y, Kim H M.Mater Sci Technol, 2003; 19: 1665
[6] Wang L, Xie G, Lou L H.Mater Lett, 2013; 109: 154
[7] Yoda R, Wantanabe T, Sato Y.Jpn Inst Met, 1969; 33: 862
[8] Fuchs G E.Mater Sci Eng, 2001; A300: 52
[9] Walston S, Cetel A, Mackay R, O'Hara K, Duhl D, Dreshfield R. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Champion, PA: TMS, 2004: 15
[10] Liu L R, Sun X T, Jin T.Mech Eng Mater, 2007; 31(5): 9
[10] (刘丽荣, 孙新涛, 金涛. 机械工程材料, 2007; 31(5): 9)
[11] Pu S, Xie G, Zheng W, Wang D, Lu Y Z, Lou L H, Feng Q.Acta Metall Sin, 2015; 51: 239
[11] (濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. 金属学报, 2015; 51: 239)
[12] Panwisawas C, Mathur H, Gebelin J, Putman D, Rae C M F, Reed R C.Acta Mater, 2013; 61: 51
[13] Wang L, Pyczak F, Zhang J, Lou L H, Singer R F.Mater Sci Eng, 2012; A532: 487
[14] Xie G, Wang L, Zhang J, Lou L H.Scr Mater, 2012; 66: 378
[15] Bürgel R, Portella P D, Preuhs J.In: Pollock T M, Kissinger R D,Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 229
[16] Xie G, Zhang J, Lou L H.Scr Mater, 2008; 59: 858
[17] Bond S D, Martin J W.J Mater Sci, 1984; 19: 3867
[18] Wang L, Xie G, Zhang J, Lou L H.Scr Mater, 2006; 55: 457
[19] Zhang J, Shen J, Lu Y Z, Lou L H.Acta Metall Sin, 2010; 46: 1322
[19] (张健, 申健, 卢玉章, 楼琅洪. 金属学报, 2010; 46: 1322)
[20] Elliott A J, Pollock T M.Metall Mater Trans, 2007; 38A: 871
[21] Gungor M.Metall Mater Trans, 2006; 37A: 1949
[22] Kurz W, Fisher D J.Fundamentals of Solidification. Zurich: Trans Tech Publications Ltd., 1998: 94
[23] Liu G, Liu L, Zhang S X, Yang C B, Zhang J, Fu H Z.Acta Metall Sin, 2012; 48: 845
[23] (刘刚, 刘林, 张胜霞, 杨初斌, 张军, 傅恒志. 金属学报, 2012; 48: 845)
[24] Kearsey R M, Beddoes J C, Jones P, Au P.Intermetallics, 2004; 12: 903
[25] Xiong J C, Li J R, Sun F L, Liu S Z, Han M.Acta Metall Sin, 2014; 50: 737
[25] (熊继春, 李嘉荣, 孙凤礼, 刘世忠, 韩梅. 金属学报, 2014; 50: 737)
[26] Cox D C, Roebuck B, Rae C M F, Reed R C.Mater Sci Technol, 2003; 19: 440
[27] Paul U, Sahm P R, Goldschmidt D.Mater Sci Eng, 1993; A173: 49
[28] Porter A, Ralph B. J Mater Sci, 1984; 19: 3867
[29] Dahlen M, Winberg L.Acta Metall, 1980; 28: 41
[30] Humphreys F J, Hatherly M.Recrystallization and Related Annealing Phenomena. 2nd Ed., London: Elsevier, 2004: 112
[31] Zambaldi C, Roters F, Raabe D, Glatzel U. Mater Sci Eng, 2007; A454-455: 433
[32] Wang L, Jiang W G, Lou L H.J Alloys Compd, 2015; 629: 247
[33] Caron P.In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 737
[34] Giamei A F, Anton D L.Metall Trans, 1985; 16A: 1997
[35] Yang D Y, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q.J Aeron Mater, 2003; 23(suppl): 17
[35] (阳大云, 金涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 航空材料学报, 2003; 23(增刊): 17)
[36] Porter A J, Ralph B.Mater Sci Eng, 1983; 59: 69
[37] Goldschmidt D, Paul U, Sahm P R.In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale: TMS, 1992: 155
[38] Simth C S.Trans Met Soc AIME, 1948; 175: 15
[39] Glatzel U.Microstructure and Internal Strains of Undeformed and Creep Deformed Samples of a Nickel-Base Superalloy. Berlin: Verlag DrKoster Press, 1994: 14
[40] Sudbrack C K, Isheim D, Noebe R D, Jacobson N S, Seidman D N.Microsc Mircroanal, 2004; 10: 355
[41] Ge B H, Luo Y S, Li J R, Zhu J.Metall Mater Trans, 2011; 42A: 548
[42] Karunaratne M S A, Carter P, Reed R C.Mater Sci Eng, 2000; A281: 229
[43] He X L, Djahazi M, Jonas J J, Jackman J.Acta Metall, 1991; 39: 2295
[44] Pan Z Y, Hu X B, Xie G, Zhu Y L, Pu S, Ma X L.J Chin Electr Microsc Soc, 2014; 33: 197
[44] (潘志毅, 胡肖兵, 谢光, 朱银莲, 濮晟, 马秀良. 电子显微学报, 2014; 33: 197)
[45] Pessah M, Caron P, Khan T.In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Warrendale: TMS, 1992: 567
[46] Darolia R, Lahrman D F, Field R D.In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: TMS, 1988: 255
[1] 康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.
[2] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[3] 王康,邓爱红,龚敏,卢晓波,张元元,刘翔. 多能氦离子注入对W金属微结构的影响[J]. 金属学报, 2017, 53(1): 70-76.
[4] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[5] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[6] 何承绪,杨富尧,严国春,孟利,马光,陈新,毛卫民. 常化处理对薄规格取向硅钢织构的影响*[J]. 金属学报, 2016, 52(9): 1063-1069.
[7] 徐斌,胡庆贤,陈树君,蒋凡,王晓丽. K-PAW准稳态过程小孔与熔池动态行为的数值模拟*[J]. 金属学报, 2016, 52(7): 804-810.
[8] 张思倩,王栋,王迪,彭建强. Re对一种定向凝固镍基高温合金微观组织的影响*[J]. 金属学报, 2016, 52(7): 851-858.
[9] 骆良顺,刘桐,张延宁,苏彦庆,郭景杰,傅恒志. 定向凝固Al-Y合金组织演化规律及小平面相生长*I. Al-15%Y过共晶合金组织演化规律[J]. 金属学报, 2016, 52(7): 859-865.
[10] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[11] 张京,郑运荣,冯强. 基于蠕变损伤的定向凝固DZ125合金恢复热处理研究*[J]. 金属学报, 2016, 52(6): 717-726.
[12] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[13] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2016, 53(5): 539-548.
[14] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[15] 杨旭,廖波,刘坚,严伟,单以银,肖福仁,杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2016, 53(5): 513-523.