Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 649-660    DOI: 10.11900/0412.1961.2015.00453
  论文 本期目录 | 过刊浏览 |
Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*
王学林1,董利明2,杨玮玮3,张宇2,王学敏1,尚成嘉1()
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 江苏省(沙钢)钢铁研究院, 张家港 215625
3) 渤海装备研究院输送装备分院, 沧州 062658
EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL
Xuelin WANG1,Liming DONG2,Weiwei YANG3,Yu ZHANG2,Xuemin WANG1,Chengjia SHANG1()
1 School of Materials Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Institute of Research of Iron and Steel of Shasteel, Zhangjiagang 215625, China
3 CNPC Bohai Equipment Steel Pipe Research Institute, Cangzhou 062658, China
引用本文:

王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
Xuelin WANG, Liming DONG, Weiwei YANG, Yu ZHANG, Xuemin WANG, Chengjia SHANG. EFFECT OF Mn, Ni, Mo PROPORTION ON MICRO-STRUCTURE AND MECHANICAL PROPERTIESOF WELD METAL OF K65 PIPELINE STEEL[J]. Acta Metall Sin, 2016, 52(6): 649-660.

全文: PDF(2709 KB)   HTML
摘要: 

以Mn-Ni-Mo-Ti-B为主要合金系, 研制出适用于低温服役环境下的高强高韧管线钢埋弧焊丝, 并应用于30.8 mm厚K65管线钢现场焊接实验. 结果表明, 焊缝金属屈服强度达到583~689 MPa, 抗拉强度达到714~768 MPa, -40 ℃冲击功均在90 J以上, 焊缝具有优异的强韧性匹配. 焊丝直径为4.0 mm, 适用于四丝双面埋弧焊, 效率高, 且热影响区(HAZ) 低温韧性优异(-40 ℃冲击功>100 J). 采用OM, TEM和LePera方法对焊缝金属组织的观察表明, 焊缝组织主要为精细的针状铁素体、少量的先共析晶界铁素体、侧板条铁素体和弥散分布的细小马氏体/奥氏体(M/A) 岛状颗粒. 焊缝金属中0.2%Mo可以有效抑制先共析晶界铁素体及侧板条铁素体的生成, 晶粒细化作用显著. Mn和Ni的适量增加会促进针状铁素体的形成, 显著提高焊缝金属低温韧性. 但Mn, Ni配比不当而超过某个范围时将会导致马氏体或其它低温相变产物形成, 削弱低温韧性. 当K65焊缝金属中含(1.5%~2.0%)Mn, (0.9%~1.2%)Ni, (0.2%~0.25%)Mo时, 可以使其具有高强度的同时低温冲击韧性优异, 且在Mn与Ni配比含量不越过马氏体形成线(Ms线)的前提下, 可以采用加Mn减Ni的方法配比其合金含量.

关键词 K65管线钢焊缝金属热影响区针状铁素体马氏体/奥氏体组元低温冲击韧性    
Abstract

Longitudinal submerged arc welding pipeline steels with heavy caliber and large wall thickness are widely applied in the oil gas transmission to enhance the transmission efficiency and save cost. K65 pipeline steels are the main material for the Bovanenkove-Ukhta oil & gas transmission project. It is required that the -40 ℃ low temperature toughness of weld metal and heat affected zone (HAZ) are over 60 J for K65 pipelines. This standard is much stricter than that of X80 pipelines. The pipeline with superior low temperature toughness is seldom investigated. In this work, the Mn-Ni-Mo-Ti-B alloy submerged arc welding wire with high strength and high tough ness was designed, which was favorable to obtain excellent low temperature toughness. The results showed that the weld metal had a good combination of strength and low temperature toughness, the yield strength was 583~689 MPa, the tensile strength was 714~768 MPa, and the impact absorbed energy at -40 ℃ was over 90 J. The wire with a diameter of 4.0 mm was suitable for double-sided submerged arc welding with four wires, and the -40 ℃ impact energy of HAZ was over 100 J. The microstructure of weld metal was primarily comprised of fine acicular ferrite (AF), proeutectoid grain boundary ferrite (GBF), ferrite side plates (FSP) and small martensite/austenite (M/A) constituents. The weld metal with 0.2%Mo can effectively restrain the formation of GBF and FSP, significantly refining the grain size. The increased Mn and Ni contents enhanced the low temperature toughness of weld metal by increasing the amount of acicular ferrite. However, the concentration of Mn and Ni should be controlled under a critical value; much more Mn and Ni additions would promote the formation of martensite or other low temperature microstructural features, which is detrimental to weld metal toughness. The optimum combination of alloying element content was (1.5%~2.0%)Mn, (0.9%~1.2%)Ni, (0.2%~0.25%)Mo. Excellent strength and toughness can be obtained through replacing Ni by Mn in the terms of the concentration of Mn and Ni being above the Ms line.

Key wordsK65 pipeline steel    weld metal    heat affected zone (HAZ)    acicular ferrite    martensite/austenite (M/A) constituent    low temperature impact toughness
收稿日期: 2015-08-24     
基金资助:* 国家自然科学基金资助项目51371001
Weld pass Wire-1 Wire-2 Wire-3 Wire-4 Velocity Heat input
Current Voltage Current Voltage Current Voltage Current Voltage cmmin-1 (η=0.9)
A V A V A V A V kJcm-1
Inside 950 33 850 36 750 40 600 42 110 57.5
Outside 1200 33 900 36 800 40 650 40 120 58.5
表1  埋弧焊接工艺参数
Weld metal C Si Mn Ni Mo P S Others
No.1 0.063 0.21 1.60 1.19 0.132 0.010 0.0046 0.305
No.2 0.063 0.21 1.60 1.45 0.127 0.011 0.0050 0.307
No.3 0.067 0.22 1.81 0.93 0.256 0.011 0.0054 0.301
No.4 0.068 0.23 1.99 1.17 0.191 0.011 0.0057 0.313
表2  焊缝金属化学成分
图1  焊接接头力学性能检测取样位置
图2  K65管线钢显微组织的OM像
图3  焊缝金属显微组织的OM像
图4  焊缝金属中马氏体/奥氏体(M/A)形貌的OM像
图5  焊缝金属组织定量分析
图6  焊缝金属Nos.1~4显微组织的TEM像和No.4中夹杂物的EDS分析
图7  焊缝金属No1.和No.4的EBSD像和有效晶粒尺寸
图8  焊缝金属No.3接头热影响区显微组织的OM像
图9  焊缝金属No.3接头热影响区的M/A形貌的OM像
Weld metal Hardness / HV Yield strength / MPa Tensile strength / MPa Total elongation / %
No.1 231 583 723 21.8
No.2 238 606 722 23.5
No.3 244 647 714 22.0
No.4 250 689 768 21.7
表3  焊缝金属力学性能和显微硬度
图10  焊缝金属No.3焊接接头显微硬度分布
图11  Mn/Ni/ Mo配比对焊缝金属强度和低温韧性的影响
图12  焊缝金属韧脆转变温度
图13  No.3焊缝金属-80 ℃冲击断口形貌的SEM像
图14  焊缝金属No.3焊接接头各个微区低温冲击韧性
[1] Shang C J, Xia D X, Wang X L, Li X C, Nie W J.6th Int Pipeline Technology Conference, Ostend, Belgium: Lab. Soete, Tiratsoo Technial, Clarion Technical Conferences, 2013: 1
[2] Shang C J, Wang X X, Liu Q Y, Fu J Y.In: Tadeu C, Marcos S, Marcelo C C, Gray J M, Phil K, Murali M, John S, Pascoal B eds., Welding of High Strength Pipeline Steels, Arasa, Brazil: Companhia Brasileira de Metalurgia e Mineracao (CBMM), The Minerals, Metals & Materials Society (TMS), 2011: 435
[3] Wang X X. Weld Pipe, 2010; 33(2): 5(王晓香. 焊管, 2010; 33(2): 5)
[4] Gao H L. Weld Pipe, 2010; 33(10): 5(高惠临. 焊管, 2010; 33(10): 5)
[5] Yang W W, Zhao J, Jiao B, Wang Q, Bian C. Weld Pipe, 2013; 36(7): 67(杨玮玮, 赵晶, 焦斌, 王强, 边城. 焊管, 2013; 36(7): 67)
[6] Dong L M, Zhang Y, Pan X, Wang Y B.Energy Materials 2014, Xi'an, China: Chinese Society for Metals (CSM), The Minerals, Metals & Materials Society (TMS), 2014: 721
[7] Keehan E, Karlsson E, Andren H O, Bhadeshia H K D H.Weld J, 2006; 85: 200
[8] Ohkita S, Horii Y.ISIJ Int, 1995; 35: 1170
[9] Nobuo T, Chiaki S, Tadamasa Y, Jan B, Kouichi Y, Yoshihiro K.ISIJ Int, 1995; 35: 1232
[10] Pan X, Zhang Y, Wang Y B, Wang N.Heat Treat Met, 2014; 39(8): 35
[10] (潘鑫, 张宇, 王银柏, 王纳. 金属热处理, 2014; 39(8): 35)
[11] Liu Y, Olson D L.Weld J, 1996; 75: 139
[12] Basu B, Raman R.Weld J, 2002; 81: 239
[13] Ferrante M, Farrar R A.J Mater Sci, 1982; 17: 3293
[14] Yang J R, Bhadeshia H.J Mater Sci, 1991; 26: 839
[15] LePera F S.Metallography, 1979; 12: 263
[16] Abson D J, Pargeter R J. Int Met Rev, 1986; 31: 141
[17] Li Y, Baker T N.Mater Sci Technol, 2010; 26: 1029
[18] You Y, Shang C J, Subramanian S V.Met Mater Int, 2014; 20: 659
[19] Shu W, Wang X M, Li S R, He X L.Acta Metall Sin, 2011; 47: 435
[19] (舒玮, 王学敏, 李书瑞, 贺信莱. 金属学报, 2011; 47: 435)
[20] Hitoshi A.ISIJ Int, 2002; 42: 1150
[21] Wang W, Shan Y Y, Yang K.Mater Sci Eng, 2009; A502: 38
[22] Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I.Metall Mater Trans, 2003; 34A: 2505
[23] Kang K B, Chon S H, Yoo J Y.In: Jin S C, Demos A, Ronald H K, Jiang X Z, Shigeru N, Michael I, eds., Proc 2012 Int Offshore and Polar Engineering Conference, Rhodes, Greece: International Society of Offshore and Polar Engineers, 2012: 17
[24] Fairchild D P, Macia M L.In: Raghavan A, Ivar L, Ronald H K, Jin S C eds., Proc 2003 Int Offshore and Polar Engineering Conference, Hawaii, USA: International Society of Offshore and Polar Engineers, 2003: 26
[25] Li X D, Fan Y R, Ma X P, Subramanian S V, Shang C J.Mater Des, 2015; 67: 457
[26] Li X D, Ma X P, Subramanian S V, Shang C J, Misra R D K.Mater Sci Eng, 2014; A616: 141
[27] Zhang Z, Farrar R A.Weld J, 1997; 76: 183
[28] Davis C L, King J E.Metall Mater Trans, 1996; 27A: 563
[29] Li X D, Shang C J, Ma X P, Subramanian S V.Energy Materials 2014, Xi'an, China: Chinese Society for Metals (CSM), The Minerals, Metals & Materials Society (TMS), 2014: 597
[1] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[2] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[3] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[4] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[5] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[6] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[7] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[8] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[9] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[10] 宋峰雨,李艳梅,王平,朱伏先. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响*[J]. 金属学报, 2016, 52(7): 890-896.
[11] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[12] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[13] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[14] 莫文林, 张旭, 陆善平, 李殿中, 李依依. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响*[J]. 金属学报, 2015, 51(2): 230-238.
[15] 赵霞, 查向东, 刘扬, 张龙, 梁田, 马颖澈, 程乐明. 一种新型镍基耐蚀合金与625合金异种金属焊接接头的组织和力学性能*[J]. 金属学报, 2015, 51(2): 249-256.