Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 355-360    DOI: 10.11900/0412.1961.2015.00449
  论文 本期目录 | 过刊浏览 |
金属连接体涂层材料MnCo2O4尖晶石的氧化动力学行为和电性能*
张文颖1(),李俊2,周波1
1 中国地质大学机械与电子信息学院, 武汉 430074
2 华中科技大学材料科学与工程学院材料成型与模具技术重点实验室, 武汉 430074
OXIDATION KINETICS BEHAVIOR AND ELECTRICAL PROPERTY OF MnCO2O4 SPINEL AS A COATING MATERIAL FOR METALLIC INTERCONNECTS
Wenying ZHANG1(),Jun LI2,Bo ZHOU1
1 School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
2 State Key Laboratory of Materials Processing and Die&Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(1842 KB)   HTML  
摘要: 

采用溶胶-凝胶法在SUS 430合金表面制备MnCo2O4尖晶石涂层, 研究在固体氧化物燃料电池(SOFCs)阴极气氛下涂层对于SUS 430合金氧化动力学行为和电性能的效用. 利用XRD, EDS和SEM对合金表面氧化物的相结构,表面和截面形貌以及成分进行表征, 并采用四探针直流技术测量表面氧化物的面比电阻(ASR). 结果表明, 涂层合金在750 ℃空气中氧化1000 h形成2 μm氧化物层, 其主要由内层Mn-Cr尖晶石和外层掺杂的Mn-Co尖晶石构成; Cr2O3和Fe2O3的形成受到了抑制. 氧化动力学曲线遵循抛物线规律, 2段氧化速率常数分别为3.74×10-15 g2/(cm4s) (0~200 h)和7.06×10-15 g2/(cm4·s) (200~1000 h), 与无涂层SUS 430合金相比降低了1个数量级. 在600~800 ℃范围内, 氧化物层的ASR介于5.21~22.65 mΩcm2范围内. MnCo2O4涂层有效地增强了SUS 430合金的抗氧化能力和电性能.

关键词 固体氧化物燃料电池金属连接体MnCo2O4 尖晶石氧化动力学面比电阻    
Abstract

MnCo2O4 spinel was coated on the surface of SUS 430 alloy by using the sol-gel method. The oxidation kinetics behavior and electrical property of coated SUS 430 alloy in solid oxide fuel cells (SOFCs) cathode atmosphere were investigated. XRD, EDS and SEM were used to characterize the phase structure, surface and cross-section morphology, and composition of the surface oxides; the area specific resistance (ASR) of the surface oxides was measured by using the four-probe direct current technique. The result shows that a 2 μm thick oxide scale, mainly consisting of an inner layer of Mn-Cr spinel and an outer layer of doped Mn-Co spinel, was formed during cyclic oxidation at 750 ℃ in air for 1000 h. The growth of Cr2O3 and Fe2O3 was depressed. The oxidation kinetics obeys the parabolic law with two rate constants 3.74×10-15 g2/(cm4s)(0~200 h) and 7.06×10-15 g2/(cm4s) (200~1000 h), respectively, which is 1 order of magnitude lower than that of the SUS 430 alloy without coating. The ASR is in the range of 5.21~22.65 mΩcm2 at 600~800 ℃. MnCo2O4 coating was proved to be effective in enhancing the oxidation resistance and electrical property of SUS 430 alloy.

Key wordssolid oxide fuel cell    metallic interconnect    spinel MnCo2O4    oxidation kinetics    area specific resistance
收稿日期: 2015-08-21      出版日期: 2016-03-17

引用本文:

张文颖, 李俊, 周波. 金属连接体涂层材料MnCo2O4尖晶石的氧化动力学行为和电性能*[J]. 金属学报, 2016, 52(3): 355-360.
Wenying ZHANG, Jun LI, Bo ZHOU. OXIDATION KINETICS BEHAVIOR AND ELECTRICAL PROPERTY OF MnCO2O4 SPINEL AS A COATING MATERIAL FOR METALLIC INTERCONNECTS. Acta Metall, 2016, 52(3): 355-360.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00449      或      http://www.ams.org.cn/CN/Y2016/V52/I3/355

Position O Cr Mn Fe Co
A 17.92 2.29 18.16 5.04 56.58
B 15.46 5.76 13.79 19.52 45.48
C 13.96 24.15 35.69 5.94 20.26
表1  图2中不同区域的EDS分析结果
图1  涂覆MnCo2O4涂层的SUS 430合金在750 ℃空气中氧化1000 h前后的XRD谱
图2  MnCo2O4涂层在750 ℃空气中氧化1000 h前后的表面形貌
图3  MnCo2O4涂层在750 ℃空气中氧化1000 h后的截面形貌和EDS线扫描分析
图4  涂覆MnCo2O4涂层的SUS 430合金在750 ℃空气中氧化时氧化增重的平方与氧化时间的关系
图5  MnCo2O4涂层在750 ℃空气中氧化1000 h后面比电阻ASR与测试温度的关系
[1] Yang Z G.Int Mater Rev, 2008; 53: 39
[2] Zhu W Z, Deevi S C.Mater Res Bull, 2003; 38: 957
[3] Fergus J W.Mater Sci Eng, 2005; A397: 271
[4] Toji A, Uehara T.ECS Trans, 2007; 7: 2117
[5] Han M F, Peng S P, Wang Z L, Yang Z B, Chen X.J Power Sources, 2007; 164: 278
[6] Pu J, Li J, Hua B, Xie G Y.J Power Sources, 2006; 158: 354
[7] Stanislowski M, Wessel E, Hilpert K, Markus T, Singheiser L.J Electrochem Soc, 2007; 154: A295
[8] Tucker M C, Kurokawa H, Jacobson C P, De Jonghe L C, Visco S J.J Power Sources, 2006; 160: 130
[9] Shaigan N, Qu W, Ivey D G, Chen W.J Power Sources, 2010; 195: 1529
[10] Qu W, Li J, Ivey D G, Hill J M.J Power Sources, 2006; 157: 335
[11] Oishi N, Namikawa T, Yamazaki Y.Surf Coat Technol, 2000; 132(1): 58
[12] Roure S, Czerwinski F, Petric A.Oxid Met, 1994; 42(1~2): 75
[13] Johnson C, Gemmen R, Orlovskaya N.Compos Part Eng, 2004; 35B: 167
[14] Chu C, Wang J, Lee S.Int J Hydrogen Energy, 2008; 33: 2536
[15] Yang Z, Xia G, Maupin G D, Stevenson J W.J Electrochem Soc, 2006; 153: A1852
[16] Shaigan N, Ivey D G, Chen W.J Power Sources, 2008; 183: 651
[17] Qu W, Jian L, Hill J W, Ivey D G.J Power Sources, 2006; 153: 114
[18] Wei W, Chen W, Ivey D G.J Power Sources, 2009; 186: 428
[19] Hua B, Pu J, Gong W, Zhang J F, Lu F S, Jian L.J Power Sources, 2008; 185: 419
[20] Bateni M R, Wei P, Deng X, Petric A.Surf Coat Technol, 2007; 201: 4677
[21] Hua B, Zhang J F, Lu F S, Kong Y H, Pu J, Li J.Acta Metall Sin, 2009; 45: 605
[21] (华斌, 张建福, 卢凤双, 孔永红, 蒲健, 李箭. 金属学报, 2009; 45: 605)
[22] Shannon R D. Acta Cryst, 1976; 32A: 751
[23] Li J, Pu J, Hua B, Xie G Y.J Power Sources, 2006; 159: 641
[24] Quadakkers W J, Piron-Abellan J, Shemet V.Mater High Temp, 2003; 20: 115
[1] 王松林,凤仪,王东生,王泾文. 三层共烧制备LaCrO3基连接体/复合阳极/YSZ电解质的研究[J]. 金属学报, 2012, 48(5): 587-592.
[2] 邱军 赵文金 Thomas Guilbert Jean-Luc Bechade. 3种锆合金的高温氧化行为[J]. 金属学报, 2011, 47(9): 1216-1220.
[3] 华斌 张建福 卢凤双 孔永红 蒲健 李箭. LaCoO3涂层对SUS 430合金连接体中温氧化行为的影响[J]. 金属学报, 2009, 45(5): 605-609.
[4] 陈虎魁; 刘建睿; 黄卫东 . 镁熔体在空气/HFC-134a气氛中的高温氧化特性及机理分析[J]. 金属学报, 2007, 43(6): 625-630 .
[5] 李云; 郭建亭; 尚海波 . 铸造镍高温合金K35 的高温氧化行为[J]. 金属学报, 2003, 39(7): 749-754 .
[6] 李猛进; 孙晓峰; 管恒荣 . Pd-Ni-Al涂层的高温长期氧化行为[J]. 金属学报, 2003, 39(7): 755-760 .
[7] 方前锋; 易志国; 张国光 . La2M0209系新型氧离子导体中氧空位扩散的内耗与介电弛豫研究[J]. 金属学报, 2003, 39(11): 1133-.
[8] 方前锋; 易志国; 张国光 . La2M0209系新型氧离子导体中氧空位扩散的内耗与介电弛豫研究[J]. 金属学报, 2003, 39(11): 1133-1138 .
[9] 李向阳;张永刚;陈昌麒;张孝吉;张通和;张荟星. 二元Ti-Al合金高温氧化机理[J]. 金属学报, 1997, 33(9): 964-970.
[10] 邢鹏飞;翟玉春;田彦文;耿彦;陈锋. WS_2在空气中氧化动力学的研究[J]. 金属学报, 1996, 32(2): 187-190.