Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1163-1178    DOI: 10.11900/0412.1961.2015.00448
  本期目录 | 过刊浏览 |
单晶高温合金凝固特性与典型凝固缺陷研究
张军(),黄太文,刘林,傅恒志
ADVANCES IN SOLIDIFICATION CHARACTERISTICS AND TYPICAL CASTING DEFECTS IN NICKEL-BASED SINGLE CRYSTAL SUPERALLOYS
Jun ZHANG(),Taiwen HUANG,Lin LIU,Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
全文: PDF(9419 KB)   HTML  
  
摘要: 

单晶高温合金是一种复杂组元多相组织材料, 随着合金化程度的不断提高、难熔元素的增多和叶片结构的复杂化与大型化, 凝固缺陷控制成为提高叶片质量和性能的关键. 单晶合金的凝固组织及凝固缺陷不仅与合金成分有关, 还取决于其凝固特性及工艺条件, 本文阐述了先进单晶合金固/液相变温度、凝固分配系数等凝固特性的特点和变化规律, 重点分析了晶体取向偏离和杂晶2种典型凝固缺陷形成机制及其与凝固特性、工艺条件的关系, 探讨了解决复杂单晶叶片典型缺陷的方法和思路, 并评述了不同控制方法的实施效果.

关键词 单晶高温合金凝固特性凝固缺陷    
Abstract

Single crystal (SC) superalloy is a kind of complex structure and multi phase materials. With the increase of the degree of alloying and the content of refractory elements, or the more complicated structure and larger size of the casting made of SC superalloy, it is essential important to suppress the formation of solidification defects to improve the quality and performance of the blades. The microstructure and solidification defects of single crystal alloy are not only related to the composition of the alloy, but also depend on its solidification characteristics and technological conditions. The paper first summarizes the research progress of the solidification characteristics for advanced SC superalloys, focusing on analysis of the effects of solidification characteristics and processing parameters on the formation and its mechanics for two typical directional solidification defects, crystallographic orientation deviation and stray grains. Then some methods and approaches to suppress such defect formation for complex single crystal blade have been reviewed.

Key wordssingle crystal superalloy    solidification characteristic    solidification defect
     出版日期: 2015-09-07
基金资助:*国家高技术研究发展计划项目2012AA03A511, 国家自然科学基金项目51331005和50931004, 国家重点基础研究发展计划项目2011CB610406和西北工业大学基础研究基金项目2014JM6227资助

引用本文:

张军,黄太文,刘林,傅恒志. 单晶高温合金凝固特性与典型凝固缺陷研究[J]. 金属学报, 2015, 51(10): 1163-1178.
Jun ZHANG,Taiwen HUANG,Lin LIU,Hengzhi FU. ADVANCES IN SOLIDIFICATION CHARACTERISTICS AND TYPICAL CASTING DEFECTS IN NICKEL-BASED SINGLE CRYSTAL SUPERALLOYS. Acta Metall, 2015, 51(10): 1163-1178.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00448      或      http://www.ams.org.cn/CN/Y2015/V51/I10/1163

图 1  合金元素对单晶高温合金液相线温度的影响[12]
图 2  Re和Ru含量对镍基单晶高温合金凝固特征温度的影响[15]
Mass fraction of C / % TL TS TMC Tg
0.001 1367.6 1332.2 - 1284.4
0.006 1363.8 1326.6 1354.1 1285.8
0.045 1361.0 1329.2 1344.6 1293.5
0.085 1360.1 1327.3 1346.5 1284.6
0.150 1364.8 1333.7 1358.0 1281.8
表1  C含量对AM3合金相变温度的影响[19]
图3  Re和Ru对铸态组织共晶含量的影响[15]
图4  一种第三代单晶高温合金在不同过热温度下的部分DTA曲线[25]
图5  镍基高温合金DD90中各组元的分配系数随过热参数的变化
图 6  单晶叶片的凝固缺陷
图7  晶粒取向偏差与起始段高度的关系[28]
图8  起始段尺寸与单晶取向的关系[31]
图9  抽拉速率和铸型保温温度对选出单晶取向的影响[28]
图10  “籽晶+选晶”法时籽晶段微观组织和不同位置处的光学显微组织[34]
图11  突变截面内部的枝晶生长情况[38]
Seed q1 q2 θ 1 θ 2 Dq1 Dq2
1 1.39 0 1.86 0.64 0.47 0.64
2 15.35 2.56 14.46 1.53 0.89 1.03
3 0.27 45.12 0.36 45.27 0.09 0.15
表2  选晶器出口与籽晶取向变化[34]
图12  叶片平台温度场演化及液相线温度等温线示意图[34]
图13  C, B和Re含量不同的合金在叶片模拟件平台处杂晶的形成[37]
图14  不同拉速条件下杂晶出现的位置[48]
Alloy Cr Co Mo W Al Ta Re C B Hf Ni
1-1 3.01 11.6 1.02 5.90 6.11 7.73 3.16 - - 0.04 Bal.
1-2 2.99 11.8 1.03 5.85 6.03 7.79 6.04 - - 0.09 Bal.
2-1 5.08 11.9 1.01 5.83 5.96 7.86 4.95 0.130 - 0.08 Bal.
2-2 5.05 12.0 1.01 6.00 5.99 8.14 5.08 0.085 - 0.09 Bal.
3-1 4.95 11.9 1.01 5.80 6.03 7.96 4.96 0.072 0.005 0.08 Bal.
3-2 4.94 11.8 1.01 5.77 5.99 7.85 4.87 0.078 0.014 0.07 Bal.
表3  研究Re, C和B成分变化对于平台处杂晶形成的影响的实验合金的名义成分[37]
图15  添加石墨块对杂晶形成的影响[49]
图16  添加引晶条叶片模拟件CAFÉ模拟和实验结果[49]
图17  籽晶的摆放示意图[34]
图18  二次枝晶取向与偏转角度之间的关系[34]
图19  籽晶段和选晶段杂晶的演化[34]
[1] Reed R C, Tao T, Warnken N. Acta Mater, 2009; 57: 5898
[2] Biavette D, Caron P, Khan T. Scr Metall, 1986; 20: 1395
[3] Mottura A, Wu R T, Finnis M W, Reed R C. Acta Mater, 2008; 56: 2669
[4] Tin S, Pollock T M. J Propul Power, 2006; 22: 361
[5] Tryon B, Feng Q, Pollock T M. Intermetallics, 2004; 12: 957
[6] Feng Q, Nandy T K, Pollock T M. Scr Mater, 2004; 50: 849
[7] D'Souza N, Dong H B. Scr Mater, 2007; 56: 41
[8] Zheng Y R. Acta Metall Sin, 1986; 22: 119 (郑运荣. 金属学报, 1986; 22: 119)
[9] Reed R C. The Superalloys: Fundamentals and Applications. New York: Cambridge University Press, 2006: 1
[10] Murakami H, Honma T, Koizumi Y, Harada H. In: Pollock T M, Kissinger R D, Bowman R R eds., Superalloy 2000, Warrendale: TMS, 2000: 747
[11] Kearsey R M, Beddoes J C, Jones P, Au P. Intermetallics, 2004; 12: 903
[12] Feng Q, Nandy T K, Tin S, Pollock T M. Acta Mater, 2003; 51: 269
[13] Heckl A, Rettig R, Singer R F. Metall Mater Trans, 2010; 41A: 202
[14] Hobbs R A, Tin S, Rae C M F, Broomfield R W, Humphreys C J. In: Green K A, Pollock T M, Harada H eds., Superalloys 2004, Warrendale: TMS, 2004: 819
[15] Liu G, Liu L, Zhao X B, Ge B M, Zhang J, Fu H Z. Metall Mater Trans, 2011; 42A: 2733
[16] Caldwell E C, Fela F J, Fuchs G E. In: Green K A, Pollock T M, Harada H eds., Superalloys 2004, Warrendale: TMS, 2004: 811
[17] Liu L R, Jin T, Zhao N R, Wang Z H. Mater Lett, 2004; 58: 2290
[18] Al-Jarba K A. PhD Dissertation, University of Florida, USA, 2003
[19] Hu Q, Liu L, Zhao X B, Gao S F, Zhang J, Fu H Z. Trans Nonferrous Met Soc China, 2013; 23: 3257
[20] Kearsey R M. PhD Dissertation, Carleton University, Canada, 2004
[21] Hobbs R A, Tin S, Rae C M F. Metall Mater Trans, 2005; 36A: 2761
[22] Tin S, Pollock T M. Mater Sci Eng, 2003; A348: 111
[23] Zheng L, Li S S, Xiao C B, Tang D Z, Gu C Q. Key Eng Mater, 2007; 353-358: 507
[24] Zhang J, Lou L H. J Mater Sci Technol, 2007; 23: 289
[25] Jiao S, Zhang J, Jin T, Wang C S, Wang H F, Liu L, Fu H Z. Rare Met Mater Eng, 2013; 42: 1028 (焦 莎, 张 军, 金 涛, 王常帅, 王海峰, 刘 林, 傅恒志. 稀有金属材料与工程, 2013; 42: 1028)
[26] Seth Brij B. In: Pollock T M, Kissrnger R D, Bowman R R, Gree K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 3
[27] Gao S F, Liu L, Wang N, Zhao X B, Zhang J, Fu H Z. Metall Mater Trans, 2012; 43A: 3767
[28] Gao S F, Liu L, Wang N, Zhao X B, Zhang J, Fu H Z. Mater Sci Technol, 2011; 27: 1783
[29] Dai H J, Dong H B, D'Souza N. Metall Mater Trans, 2011; 42A: 3439
[30] Esaka H, Shinozuka K, Tamura M. Mater Sci Eng, 2005; A413-414: 151
[31] Zhang X Y. Master Thesis, Northwestern Polytechnical University, Xi'an, 2013 (张晓越. 西北工业大学硕士学位论文, 西安, 2013)
[32] Zhou Y Z, Volek A, Green N R. Acta Mater, 2008; 56: 2631
[33] Zhang X L, Zhou Y Z, Jin T, Sun X F, Liu L. J Mater Sci Technol, 2013; 29: 879
[34] Jiao J J. Master Thesis, Northwestern Polytechnical University, Xi'an, 2015 (焦娟娟. 西北工业大学硕士学位论文, 西安, 2015)
[35] Stanford N, Djakovic A, Shollock B A, McLean M, Souza N D, Jennings P. In: Green K A, Pollock T M, Harada H eds., Superalloys 2004, Warrendale: TMS, 2004: 719
[36] Stanford N, Djakovic A, Shollock B A, McLean M. Scr Mater, 2004; 50: 159
[37] Chen X Z. Master Thesis, Northwestern Polytechnical University, Xi'an, 2014 (陈先州. 西北工业大学硕士学位论文, 西安, 2014)
[38] de Bussac A, Gandin C A. Mater Sci Eng, 1997; A237: 35
[39] Rappaz M, Gandin C A, Desbiolles J L. Metall Mater Trans, 1996; 27A: 695
[40] Napolitano R E, Schaefer R J. Mater Sci, 2000; 35: 1641
[41] Meyer T V, Dedecke D, Paul U, Sahm P R. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: TMS, 1996: 471
[42] Zhang X L, Zhou Y Z, Jin T, Sun X F. Acta Metall Sin, 2012; 48: 1229 (张小丽, 周亦胄, 金 涛, 孙晓峰. 金属学报, 2012; 48: 1229)
[43] Meng X B, LI J G, Chen Z Q. Metall Mater Trans, 2013; 44A: 1955
[44] Yang X L, Ness D, Lee P D, Souza N D. Mater Sci Eng, 2005; A413: 571
[45] Tin S, Pollock T M. Metall Mater Trans, 2003; 34A: 1953
[46] Gu J P, Beckermann C, Giamei A F. Metall Mater Trans, 1997; 28A: 1533
[47] Lu Y Z, Wang D W, Zhang J, Lou L H. Foundry, 2009; 58: 245 (卢玉章, 王大伟, 张 健, 楼琅洪. 铸造, 2009; 58: 245)
[48] Gao S F. PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2012 (高斯峰. 西北工业大学博士学位论文, 西安, 2012)
[49] Chen C. Master Thesis, Northwestern Polytechnical University, Xi'an, 2013 (陈 纯. 西北工业大学硕士学位论文, 西安, 2013)
[50] Huang T W, Liu L, Zhang W G, Zhang J, Fu H Z. Acta Metall Sin, 2009; 45: 1225 (黄太文, 刘 林, 张卫国, 张 军, 傅恒志. 金属学报, 2009; 45: 1225)
[51] Ma D X, Bührig-Polaczek A. Metall Mater Trans, 2009; 40B: 738
[52] Ma D X, Zhou B, Bührig-Polaczek A. Adv Mater Res, 2011; 278: 306
[53] Xuan W D, Ren Z M, Ren W L, Yu J B, Chen C. J Iron Steel Res, 2011; 23: 369 (玄伟东, 任忠鸣, 任维丽, 余建波, 陈 超. 钢铁研究学报, 2011; 23: 369)
[54] Yang X L, Ness D, Lee P D. Mater Sci Eng, 2005; A413: 571
[55] D'Souza N, Jennings P A, Yang X L, Dong H B, Lee P D, McLean M. Metall Mater Trans, 2005; 36B: 657
[56] Yang C B, Liu L, Zhao X B, Sun D J, Zhang J, Fu H Z. Appl Phys, 2014; 114A: 979
[57] Zhou Y Z. Scr Mater, 2011; 65: 281
[1] 宁礼奎,佟健,刘恩泽,谭政,纪慧思,郑志. Ru对一种高Cr镍基单晶高温合金凝固组织的影响[J]. 金属学报, 2017, 53(4): 423-432.
[2] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[3] 孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*[J]. 金属学报, 2016, 52(7): 875-882.
[4] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[5] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[6] 王玉敏,李双明,钟宏,傅恒志. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51(9): 1038-1048.
[7] 杜随更,王喜锋,高漫. 单晶DD3与细晶GH4169高温合金摩擦焊接界面表征*[J]. 金属学报, 2015, 51(8): 951-956.
[8] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.
[9] 金涛,周亦胄,王新广,刘金来,孙晓峰,胡壮麒. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162.
[10] 王效光,李嘉荣,喻健,刘世忠,史振学,岳晓岱. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10): 1253-1260.
[11] 赵云松,张剑,骆宇时,唐定中,冯强. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51(10): 1261-1272.
[12] 王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.
[13] 林惠文,刘纪德,周亦胄,金涛,孙晓峰. Pt对镍基单晶高温合金持久性能的影响[J]. 金属学报, 2015, 51(1): 77-84.
[14] 罗银屏, 周亦胄, 刘金来. Ru和Cr在一种无Re镍基单晶高温合金凝固过程中的作用[J]. 金属学报, 2014, 50(9): 1025-1030.
[15] 宁礼奎, 郑志, 金涛, 唐颂, 刘恩泽, 佟健, 于永泗, 孙晓峰. 热处理对一种新型镍基单晶高温合金组织与性能的影响*[J]. 金属学报, 2014, 50(8): 1011-1018.