Please wait a minute...
金属学报  2015, Vol. 51 Issue (10): 1153-1162    DOI: 10.11900/0412.1961.2015.00429
  本期目录 | 过刊浏览 | 高级检索 |
先进镍基单晶高温合金组织稳定性及力学行为的研究进展
金涛(),周亦胄,王新广,刘金来,孙晓峰,胡壮麒
RESEARCH PROCESS ON MICROSTRUCTURAL STABILITY AND MECHANICAL BEHAVIOR OF ADVANCED Ni-BASED SINGLE CRYSTAL SUPERALLOYS
Tao JIN(),Yizhou ZHOU,Xinguang WANG,Jinlai LIU,Xiaofeng SUN,Zhuangqi HU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
下载:  HTML  PDF(3697KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

从先进镍基单晶高温合金的微观组织稳定性和力学行为2个方面, 简要介绍了γ’相筏化、TCP相析出、高温和超高温低应力蠕变以及低周和热机械疲劳的主要研究进展. 合金元素Ru的添加提高了合金的高温低应力蠕变寿命, 但也间接促进了拓扑倒置现象的发生. 随时效时间的延长和时效温度的升高, m相中的难熔元素含量都会明显增加; 随着外加应力的增加, m相的析出量增加, 压应力则相反. m相在析出的过程中会形成大量的面缺陷, 这些缺陷会促进其它TCP相如P相和R相的形核. 在高温低应力蠕变的过程中, 镍基单晶高温合金中出现另一种重要的a<010>超位错, 通过滑移和攀移相结合的方式在γ’相中缓慢运动. 在超高温蠕变条件下, 开始出现一个蠕变加速的孕育期, 这与γ基体在超高温下不同程度的宽化有关. Ru的添加显著降低了合金的层错能, 在低周疲劳的过程中可引起层错贯穿γ/γ’界面、a/6<112> Shockley拖后位错切入γ’相等复杂变形机制. 在热机械疲劳的过程中, 裂纹萌生的位置、微观结构的变化以及抗氧化性能都会影响镍基单晶高温合金的寿命.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词:  镍基单晶高温合金  组织稳定性  力学行为    
Abstract: 

Ni-based single crystal superalloys have been widely used to produce turbine blades for advanced aero-engines because of the super temperature-related microstructural stability and comprehensive mechanical properties. However, due to effects of the high temperature and complicated stresses in service, the microstructures of superalloys might gradually evolve and fail in different modes. The present paper reviews the progress of microstructural stability and mechanical behavior including the γ’ phase rafting, TCP phase precipitation, high temperature creep, low cycle fatigue and thermomechanical fatigue of single crystal superalloys. The addition of Ru improves the creep life of superalloys, but also indirectly promotes the occurrence of “topological inversion”. On the other hand, with the increase of aging temperature and time, the contents of refractory elements in m phase rise significantly. With the increase of applied tension stress, more m phase precipitate from the γ matrix, whereas inverse tendency is shown under compression stress. Numerous planar defects are formed during precipitation of m phase, and these defects promote the nucleation of P and R phases. During high temperature and low stress creep, an important dislocation a<010> superdislocation is observed, which moves in the γ’ phase slowly by a combination of slide and climb. Under very high temperature, incubation with accelerating creep rate occurs before the primary stage, which relates to the extending process of the γ width. At last, the stacking fault energy is significantly reduced after Ru additions, and thus a series of complex deformation mechanisms occur during low cycle fatigue, e.g. stacking faults penetrating γ/γ’ interface, trailing a/6<112> Shockley dislocations shearing into the γ’ phase. During thermomechanical fatigue, the life of superalloys is influenced by the site of crack initiation, microstructural evolution and oxidation resistance.

Key words:  Ni-based single crystal superalloy    microstructural stability    mechanical behavior
                    发布日期:  2015-08-27      期的出版日期:  2015-10-29
基金资助: * 国家高技术研究发展计划项目2014AA041701, 国家自然科学基金项目51331005和11332010资助
引用本文:    
金涛,周亦胄,王新广,刘金来,孙晓峰,胡壮麒. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51(10): 1153-1162.
Tao JIN,Yizhou ZHOU,Xinguang WANG,Jinlai LIU,Xiaofeng SUN,Zhuangqi HU. RESEARCH PROCESS ON MICROSTRUCTURAL STABILITY AND MECHANICAL BEHAVIOR OF ADVANCED Ni-BASED SINGLE CRYSTAL SUPERALLOYS. Acta Metall, 2015, 51(10): 1153-1162.
链接本文:  
http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00429  或          http://www.ams.org.cn/CN/Y2015/V51/I10/1153
图1  高温合金承温能力的发展历程[1]
图2  典型镍基单晶高温合金热处理后的SEM像[10]和TEM像[11]
TCP phase System Space Atom per Coordination polyhedra Lattice
group cell CN12 CN14 CN15 CN16 parameter
nm
s Tetragonal P42/mnm 30 10 16 4 0 a=0.912
c=0.472
m Rhombohedral R-3m 13 7 2 2 2 a=0.476
c=2.583
P Orthorhombic Pnma 56 24 20 8 4 a=1.689
b=0.475
c=0.907
R Rhombohedral R-3 53 27 12 6 8 a=1.093
c=1.934
表1  s, m, P和R相的晶体学参数[18,19]
图3  含3%Ru的高Re单晶高温合金在1100 ℃长期时效1000 h和无Ru合金在1100 ℃, 150 MPa蠕变断裂后析出的TCP相形貌及其相应的选区衍射斑点[26]
图4  μ相分别与P相和R相的共生[26]
图5  含3%Ru镍基单晶高温合金在900 ℃低周疲劳之后的微观组态[44]
[1] Reed R C. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 19
[2] Hu Z Q, Liu L R, Jin T, Sun X F. Aeroengine, 2005; 31(3): 1 (胡壮麒, 刘丽荣, 金 涛, 孙晓峰. 航空发动机, 2005; 31(3): 1)
[3] Sun X F, Jin T, Zhou Y Z, Hu Z Q. Mater China, 2012; 31(12): 1 (孙晓峰, 金 涛, 周亦胄, 胡壮麒. 中国材料进展, 2012; 31(12): 1)
[4] Darolia R, Lahrman D F, Field R D, Sisson R. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1988, Champion, PA: TMS, 1988: 255
[5] Tan X P, Liu J L, Jin T, Hu Z Q, Hong H U, Choi B G, Kim I S, Jo C Y. Philos Mag Lett, 2012; 92: 556
[6] Tan X P, Liu J L, Jin T, Hu Z Q, Hong H U, Choi B G, Kim I S, Yoo Y S, Jo C Y. Metall Mater Trans, 2012; 43A: 3608
[7] Tan X P, Hong H U, Choi B G, Kim I S, Jo C Y, Jin T, Hu Z Q. J Mater Sci, 2013; 48: 1085
[8] Argence D, Vernault C, Desvallées Y, Fournier D. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Champion, PA: TMS, 2000: 829
[9] Zhang J X, Koizumi Y, Kobayashi T, Murakumo T, Harada H. Metall Mater Trans, 2004; 35A: 1911
[10] Wang X G, Liu J L, Jin T, Sun X F. Mater Sci Eng, 2014; A598: 154
[11] Wang X G, Liu J L, Jin T, Sun X F, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Des, 2015; 67: 543
[12] Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[13] Mughrabi H. Mater Sci Technol, 2009; 25: 191
[14] Pollock T M, Argon A S. Acta Metall, 1994; 42: 1859
[15] Wang X G. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2015 (王新广. 中国科学院金属研究所博士学位论文, 沈阳, 2015)
[16] Tan X P, Liu J L, Jin T, Hu Z Q, Hong H U, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2013; A580: 21
[17] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Adv Eng Mater, 2015; 17: 1034
[18] Rae C M F, Reed R C. Acta Mater, 2001; 49: 4113
[19] Seiser B, Drautz R, Pettifor D G. Acta Mater, 2011; 59: 749
[20] Yeh A C, Tin S. Metall Mater Trans, 2006; 37A: 2621
[21] Hobbs R A, Zhang L, Rae C M F, Tin S. Metall Mater Trans, 2008; 39A: 1014
[22] Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Champion, PA: TMS, 2004: 787
[23] Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H. Scr Mater, 2006; 54: 1679
[24] Gao S, Zhou Y Z, Li C F, Cui J P, Liu Z Q, Jin T. J Alloys Compd, 2014; 610: 589
[25] Cheng K Y. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009 (成魁宇. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[26] Tan X P. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012 (谭喜鹏. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[27] Luo Y P. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2014 (罗银屏. 中国科学院金属研究所硕士学位论文, 沈阳, 2014)
[28] Chen J Y, Feng Q, Sun Z Q. Scr Mater, 2010; 63: 795
[29] Pollock T M, Argon A S. Acta Metall, 1992; 40: 1
[30] Field R D, Pollock T M, Murphy W H. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Champion, PA: TMS, 1992: 557
[31] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki S. Metall Mater Trans, 2002; 33A: 3741
[32] Huang M, Cheng Z Y, Xiong J C, Li J R, Hu J Q, Liu Z L, Zhu J. Acta Mater, 2014; 76: 294
[33] Gabrisch H, Mukherji D. Acta Mater, 2000; 48: 3157
[34] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Mater Sci Eng, 2015; A626: 406
[35] Eggeler G, Dlouhy A. Acta Mater, 1997; 45: 4251
[36] Srinivasan R, Eggeler G F, Mills M J. Acta Mater, 2000; 48: 4867
[37] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H. Acta Mater, 2003; 51: 5073
[38] Reed R C, Cox D C, Rae C M F. Mater Sci Eng, 2007; A448: 88
[39] le Graverend J B, Cormier J, Jouiad M, Gallerneau F, Paulmier P, Hanmon F. Mater Sci Eng, 2010; A527: 5295
[40] Caron P. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Champion, PA: TMS, 2000: 737
[41] Li Q Q. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012 (李芹芹. 中国科学院金属研究所硕士学位论文, 沈阳, 2012)
[42] Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F, Zhang Z F. Int J Fatigue, 2014; 63: 137
[43] Auerswald J, Mukherji D, Chen W, Wahi R P. Z Metallkd, 1997; 88: 652
[44] Wang X G, Liu J L, Jin T, Sun X F, Zhou Y Z, Hu Z Q, Do J H, Choi B G, Kim I S, Jo C Y. Scr Mater, 2015; 99: 57
[45] Zhang X. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006 (张 炫. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[46] Gabb T P, Welsch G E. Scr Metall, 1986; 20: 1049
[47] Gabb T P, Welsch G E. Acta Metall, 1989; 37: 2507
[48] Milligan W W, Jayaraman N. Mater Sci Eng, 1986; 82: 127
[49] Zhou H, Ro Y, Harada H, Aoki Y, Arai M. Mater Sci Eng, 2004; A381: 20
[50] Han G M. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010 (韩国明. 中国科学院金属研究所硕士学位论文, 沈阳, 2010)
[51] Kraft S, Zauter R, Mughrabi H. Fatigue Fract Eng Mater Struct, 1993; 16: 237
[52] Liu F, Wang Z G, Ai S H, Wang Y C, Sun X F, Jin T, Guan H R. Scr Mater, 2003; 48: 1265
[53] Zhang J X, Harada H, Ro Y, Koizumi Y, Kobayashi T. Acta Mater, 2008; 56: 2975
[54] Moverare J J, Johansson S, Reed R R. Acta Mater, 2009; 57: 2266
[55] Zhang J. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2006 (张 剑. 中国科学院金属研究所博士学位论文, 沈阳, 2006)
[56] Xu Y B. Master Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013 (徐砚博. 中国科学院金属研究所硕士学位论文, 沈阳, 2013)
[1] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[2] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[3] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[4] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[5] 王玉敏,李双明,钟宏,傅恒志. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51(9): 1038-1048.
[6] 胡雪, 黄礼新, 严伟, 王威, 单以银, 杨柯. Y2O3颗粒弥散强化低活化钢的组织稳定性研究*[J]. 金属学报, 2015, 51(6): 641-650.
[7] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.
[8] 王莉,周忠娇,张少华,降向冬,楼琅洪,张健. 镍基单晶高温合金冷热循环过程中圆孔周围裂纹萌生与扩展行为[J]. 金属学报, 2015, 51(10): 1273-1278.
[9] 林惠文,刘纪德,周亦胄,金涛,孙晓峰. Pt对镍基单晶高温合金持久性能的影响[J]. 金属学报, 2015, 51(1): 77-84.
[10] 罗银屏, 周亦胄, 刘金来. Ru和Cr在一种无Re镍基单晶高温合金凝固过程中的作用[J]. 金属学报, 2014, 50(9): 1025-1030.
[11] 安彤,秦飞,王晓亮. 焊锡接点IMC层微结构演化与力学行为[J]. 金属学报, 2013, 49(9): 1137-1142.
[12] 郑成思,李龙飞,杨王玥,孙祖庆. 微观组织对共析钢室温加工硬化行为的影响[J]. 金属学报, 2013, 49(3): 257-264.
[13] 林惠文,周亦胄,张炫,金涛,孙晓峰. 一种含Pt镍基单晶高温合金的凝固行为[J]. 金属学报, 2013, 49(12): 1567-1572.
[14] 周雪峰,陈光,严世坦, 郑功,李沛,陈锋. 新型无Re镍基单晶高温合金探索研究[J]. 金属学报, 2013, 49(11): 1467-1472.
[15] 王有道 吴尔冬 王苏程 李武会. 镍基合金DD10中γ/γ'晶格错配度厚度效应的X射线衍射分析[J]. 金属学报, 2011, 47(11): 1418-1425.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed